Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector

Journal of High Energy Physics, Nov 2017

Abstract Measurements of differential cross-sections of top-quark pair production in fiducial phase-spaces are presented as a function of top-quark and \( t\overline{t} \) system kinematic observables in proton-proton collisions at a centre-of-mass energy of \( \sqrt{s}=13 \) TeV. The data set corresponds to an integrated luminosity of 3.2 fb−1, recorded in 2015 with the ATLAS detector at the CERN Large Hadron Collider. Events with exactly one electron or muon and at least two jets in the final state are used for the measurement. Two separate selections are applied that each focus on different top-quark momentum regions, referred to as resolved and boosted topologies of the \( t\overline{t} \) final state. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations by means of calculated χ2 and p-values. Open image in new window

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP11%282017%29191.pdf

Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector

JHE p Measurements of top-quark pair di erential cross-sections in the lepton+jets channel in pp collisions at s Measurements of di erential cross-sections of top-quark pair production in ducial phase-spaces are presented as a function of top-quark and tt system kinematic observables in proton-proton collisions at a centre-of-mass energy of p data set corresponds to an integrated luminosity of 3:2 fb 1, recorded in 2015 with the ATLAS detector at the CERN Large Hadron Collider. Events with exactly one electron or muon and at least two jets in the nal state are used for the measurement. Hadron-Hadron scattering (experiments) - using the ATLAS detector The ATLAS collaboration 2 and p-values. 1 Introduction Data and simulation samples Event reconstruction and selection Detector-level objects Event selection at detector level 2 3 4 5 6 7 8 9 4.1 4.2 4.3 9.1 9.2 9.3 9.4 9.5 Particle-level objects and ducial phase-space de nition Background determination and event yields Kinematic reconstruction Measured observables Unfolding procedure Systematic uncertainties determination Object reconstruction and calibration Signal modelling Background modelling Finite size of the simulated samples and luminosity uncertainty Systematic uncertainties summary 10 Results and comparisons with predictions 11 Conclusions The ATLAS collaboration 1 Introduction The large top-quark pair production cross-section at the Large Hadron Collider (LHC) allows detailed studies of the characteristics of tt production to be performed with respect to di erent kinematic variables, providing a unique opportunity to test the Standard Model (SM) at the TeV scale. Furthermore, extensions of the SM may modify the expected tt tial cross-sections in pp collisions at centre-of-mass energies of p s = 7 TeV (ATLAS [4{6], s = 8 TeV (ATLAS [8], CMS [9]), both in the full phase-space using partonlevel variables and in ducial phase-space regions using observables constructed from nalstate particles (particle level). In addition, both experiments published measurements of the top-quark transverse momentum (pT) spectrum which focused on the highest momentum region using the p probe the top-quark kinematic properties at a centre-of-mass energy of p s = 13 TeV and complement recent measurements involving leptonic nal states (ATLAS [12], CMS [13]). At this energy, the prediction for the inclusive cross-section is increased by a factor of 3.3 compared to 8 TeV, and the top quarks are produced at higher transverse momenta. This allows the top-quark pT reach to be extended up to 1.5 TeV in order to explore both the s = 8 TeV data set [10, 11]. The results presented in this paper low- and the high-momentum top-quark kinematic regimes. In the SM, the top quark decays almost exclusively into a W boson and a b-quark. The signature of a tt decay is therefore determined by the W boson decay modes. This analysis makes use of the lepton+jets tt decay mode, where one W boson decays into an electron or a muon and a neutrino, and the other W boson decays into a pair of quarks, with the two decay modes referred to as the e+jets and +jets channels, respectively. Events in which the W boson decays into an electron or muon through a lepton decay may also meet the selection criteria. Two complementary topologies of the tt nal state in the lepton+jets channel are exploited, dubbed \resolved" and \boosted", where the decay products of the hadronically decaying top quark are either angularly well separated or collimated into a single large jet reconstructed in the calorimeter, respectively. Where the jet selection e ciency of the resolved analysis decreases with the increasing top-quark transverse momentum, the boosted selection takes over to e ciently select events at higher momenta of the hadronically decaying top quarks. This paper presents a set of measurements of the tt production cross-section as a function of di erent properties of the reconstructed top quark (transverse momentum and rapidity) and of the tt system (transverse momentum, rapidity and invariant mass). The results, unfolded to a ducial particle-level phase-space, are presented as both absolute and relative di erential cross-sections and are compared to the predictions of Monte Carlo (MC) event generators. The goal of unfolding to a ducial particle-level phase-space and of using variables directly related to detector observables is to allow precision tests of quantum chromodynamics (QCD), avoiding uncertainties due to model-dependent extrapolations both to parton-level objects and to phase-space regions outside the detector sensitivity. { 2 { ATLAS is a multipurpose detector [14] that provides nearly full solid angle1 coverage around the interaction point. This analysis exploits all major components of the detector. Chargedparticle trajectories with pseudorapidity j j < 2:5 are reconstructed in the inner detector, which comprises a silicon pixel detector, a silicon microstrip detector and a transition radiation tracker (TRT). The innermost pixel layer, the insertable B-layer [15], was added before the start of the 13 TeV LHC operation, at a radius of 33 mm around a new, thinner beam pipe. The inner detector is embedded in a 2 T axial magnetic eld, allowing precise measurement of charged-particle momenta. Sampling calorimeters with several di erent designs span the pseudorapidity range up to j j = 4:9. High-granularity liquid argon (LAr) electromagnetic (EM) calorimeters are used up to j j = 3:2. Hadronic calorimeters based on scintillator-tile active material cover j j < 1:7 while LAr technology is used for hadronic calorimetry in the region 1:5 < j j < 4:9. The calorimeters are surrounded by a muon spectrometer within a magnetic eld provided by air-core toroid magnets with a bending integral of about 2.5 Tm in the barrel and up to 6 Tm in the end-caps. Three layers of precision drift tubes and cathode-strip chambers provide an accurate measurement of the muon track curvature in the region j j < 2:7. Resistive-plate and thin-gap chambers provide muon triggering capability up to j j = 2:4. Data are selected from inclusive pp interactions using a two-level trigger system [16]. A hardware-based trigger uses custom-made hardware and coarser-granularity detector data to initially reduce the trigger rate to approximately 75 kHz from the original 40 MHz LHC collision bunch rate. Next, a software-based high-level trigger, which has access to full detector granularity, is applied to further reduce the event rate to 1 kHz. 3 Data and simulation samples The di erential cross-sections are measured using a data set collected during the 2015 LHC pp run at p s = 13 TeV and with 25 ns bunch spacing. The average number of protonproton interactions per bunch crossing ranged from approximately 5 to 25, with a mean of 14. After applying data-quality assessment criteria based on beam, detector and datataking quality, the available data correspond to a total integrated luminosity of 3:2 fb 1. The uncertainty in the integrated luminosity is 2.1% and is derived, following techniques similar to those described in ref. [17], from the luminosity scale calibration using a pair of x{y beam-separation scans performed in August 2015. The data sample is collected using single-muon and single-electron triggers. For each lepton type, multiple trigger conditions are combined in order to maintain good e ciency in the full momentum range, while controlling the trigger rate. For electrons the pT thresholds 1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ) are used in the transverse plane, being the azimuthal angle around the beam pipe. The pseudorapidity is de ned in terms of the polar angle as = ln tan( =2) and the angular separation between particles is de ned as R = p( )2 + ( )2. { 3 { are 24 GeV, 60 GeV and 120 GeV, while for muons the thresholds are 20 GeV and 50 GeV. In the case of the lowest-pT thresholds, isolation requirements are also applied. The signal and background processes are modelled with various Monte Carlo event generators. Multiple overlaid proton-proton collisions are simulated with the soft QCD processes of Pythia 8.186 [18] using parameter values from tune A2 [19] and the MSTW2008LO [20] set of parton distribution functions (PDFs). The detector response is simulated [21] in Geant 4 [22]. The data and MC events are reconstructed with the same software algorithms. Simulation samples are reweighted so that the distribution of the number of proton-proton interactions per event (pile-up) matches the one observed in data. For the generation of tt samples and those with a single top quark from the W t and s-channel samples, the Powheg-Box v2 [23] event generator with the CT10 PDF set [24] in the matrix element calculations is used [25]. Events where both top quarks decay into hadronically decaying W bosons are not included. The overlap between the W t and tt samples is handled using the diagram removal scheme [26]. The top-quark mass is set to 172.5 GeV. The EvtGen v1.2.0 program [27] is used to simulate the decay of bottom and charm hadrons. The hdamp parameter, which controls the pT of the rst additional emission beyond the Born con guration in Powheg, is set to the mass of the top quark. The main e ect of this is to regulate the high-pT emission against which the tt system recoils. Signal tt events generated with these settings are referred to as the nominal signal MC sample. To estimate the e ect of the parton shower (PS) algorithm, a Powheg+Herwig++ sample is generated using the same set-up for Powheg as for the Powheg+Pythia6 sample. For alternative choices of PS, hadronisation and underlying event (UE) simulation, samples are produced with Herwig++ v2.7.1 [28] using the UE-EE-5 tune [29] and the CTEQ6L1 PDFs. The impact of the matrix element (ME) generator choice is evaluated using events generated with MadGraph5 aMC@NLO v2.1.1 [30] at NLO and the CT10 PDF set, interfaced with Herwig++ using the UE-EE-5 tune and passed through a fast simulation using a parameterisation of the performance of the ATLAS electromagnetic and hadronic calorimeters [31]. The factorisation and hadronisation scales, as well as the hdamp parameter, are varied in signal samples used to study the e ect of possible mismodelling of QCD radiation. The following two samples are produced and compared to the nominal sample, where, in the rst sample, the factorisation and hadronisation scales are varied downward by a factor of 0.5, the hdamp parameter is increased to 2mtop and the `radHi' tune variation from the Perugia2012 tune set is used. In the second sample the factorisation and hadronisation scales are varied upward by a factor of 2.0, the hdamp parameter is unchanged and the `radLo' tune variation from the Perugia2012 tune set is used. The unfolded data are compared to three additional tt simulated samples [25] which use the NNPDF3.0NLO PDF set [32] for the ME: a MadGraph5 aMC@NLO+Pythia8 sample using the A14 tune, a Powheg+Pythia8 sample simulated with the hdamp parameter set to the top-quark mass, also using the A14 tune and a Powheg+Herwig7 sample generated with the hdamp parameter set to 1.5 times the top-quark mass, using the H7-UE-MMHT tune. { 4 { HJEP1(207)9 The tt samples are normalised using tt = 832+4561 pb where the uncertainty includes e ects due to scale, PDF and S variations, evaluated using the Top++2.0 program [33]. The calculation includes next-to-next-to-leading-order (NNLO) QCD corrections and resums next-to-next-to-leading logarithmic (NNLL) soft gluon terms [34{39]. Electroweak t-channel single-top-quark events are generated using the Powheg-Box v1 event generator which uses the four- avour scheme for the next-to-leading-order (NLO) matrix element calculations together with the xed four- avour PDF set CT10f4. For this process, the top quarks are decayed using MadSpin [40] to preserve all spin correlations. For all processes, the parton shower, fragmentation and underlying event are simulated using Pythia 6.428 [41] with the CTEQ6L1 PDF sets [42] and the corresponding Perugia2012 HJEP1(207)9 tune [43]. The single-top cross-sections for the t- and s-channels are normalised using their NLO predictions, while for the W t channel it is normalised using its NLO+NNLL prediction [44{46]. For the simulation of background events, inclusive samples containing single W or Z bosons in association with jets are simulated using the Sherpa v2.1.1 [47] event generator. Matrix elements are calculated for up to two partons at NLO and four partons at LO using the Comix [48] and OpenLoop [49] matrix element event generators and merged with the Sherpa parton shower [50] using the ME+PS@NLO prescription [51]. The CT10 PDF set is used in conjunction with dedicated parton shower tuning developed by the authors of Sherpa. The W=Z+jets events are normalised using the NNLO cross-sections [52]. Diboson processes with one of the bosons decaying hadronically and the other leptonically are simulated using the Sherpa v2.1.1 event generator [47, 53]. They are calculated for up to one (ZZ) or zero (W W , W Z) additional partons at NLO and up to three additional partons at LO using the Comix and OpenLoops matrix element event generators and merged with the Sherpa parton shower using the ME+PS@NLO prescription. The CT10 PDF set is used in conjunction with dedicated parton shower tuning developed by the authors of Sherpa. The event-generator cross-sections, already evaluated at NLO accuracy, are used in this case. The tt state produced in association with weak bosons (tt + W=Z=W W , denoted as ttV ) are simulated using the MadGraph5 aMC@NLO event generator at LO interfaced to the Pythia 8.186 parton shower model [54]. The matrix elements are simulated with up to two (tt + W ), one (tt + Z) or no (tt + W W ) extra partons. The ATLAS underlyingevent tune A14 is used together with the NNPDF2.3LO PDF set. The events are normalised using their respective NLO cross-sections [55]. A summary of the MC samples used in this analysis is shown in table 1. 4 Event reconstruction and selection The lepton+jets tt decay mode is characterised by the presence of a high-pT lepton, missing transverse momentum due to the neutrino from the semileptonic top-quark decay, and two jets originating from b-quarks. Furthermore, in the resolved topology, two jets from the hadronic decay of the W boson are expected, while in the boosted topology, the presence { 5 { tt Nominal tt PS syst. tt ME syst. tt rad. syst. Extra tt model Extra tt model Extra tt model Single top t-channel Single top s-channel W (! ` )+ jets Z(! ``)+ jets W W; W Z; ZZ tt+W=Z=W W Single top W t-channel Powheg-Box v2 NLO+NNLL Powheg-Box v2 NNLO+NNLL Powheg-Box v2 NNLO+NNLL MadGraph5 NNLO+NNLL Powheg-Box v2 NNLO+NNLL Powheg-Box v2 NNLO+NNLL NNPDF3.0NLO Powheg-Box v2 NNLO+NNLL NNPDF3.0NLO NNLO+NNLL NNPDF3.0NLO MadGraph5 Powheg-Box v1 Powheg-Box v2 Sherpa v2.1.1 Sherpa v2.1.1 Sherpa v2.1.1 MadGraph5 NLO NLO NNLO NNLO NLO NLO CT10 CT10 CT10 CT10 CT10f4 CT10 CT10 CT10 CT10 CT10 Pythia 6.428 Herwig++ v2.7.1 Herwig++ v2.7.1 Pythia 6.428 Pythia 8.210 Herwig v7.0.1 Pythia 8.210 Pythia 6.428 Pythia 6.428 Pythia 6.428 Sherpa Sherpa Sherpa Perugia2012 UE-EE-5 UE-EE-5 `radHi/Lo' A14 A14 H7-UE-MMHT Perugia2012 Perugia2012 Perugia2012 Sherpa Sherpa Sherpa A14 Physics process Event generator Parton shower Tune Cross-section normalisation PDF set for hard process HJEP1(207)9 NNPDF2.3LO Pythia 8.186 Summary of MC samples, showing the event generator for the hard-scattering process, cross-section normalisation precision, PDF choice as well as the parton shower and the corresponding tune used in the analysis. The Pythia6 and Herwig++ parton-shower models use the CTEQ6L1 PDF set, while Pythia8 uses the NNPDF2.3LO PDF set and Herwig7 uses the MMHT2014lo68cl PDF set. of a large-R jet is required, in order to select events with a high-pT (boosted) hadronically decaying top quark. The following sections describe the detector-level and particle-level objects used to characterise the nal-state event topology and to de ne a ducial phase-space region for the measurements. 4.1 Detector-level objects Primary vertices are formed from reconstructed tracks spatially compatible with the interaction region. The hard-scatter primary vertex is chosen to be the vertex with the highest P p2T where the sum extends over all associated tracks with pT > 0:4 GeV. Electron candidates are reconstructed by matching tracks in the inner detector to energy deposits in the EM calorimeter. They must satisfy a \tight" likelihood-based identi cation criterion based on shower shapes in the EM calorimeter, track quality and detection of transition radiation produced in the TRT detector [56]. The EM clusters are required to have a transverse energy ET > 25 GeV and be in the pseudorapidity region j j < 2:47, excluding the transition region between the barrel and the end-cap calorimeters (1:37 < j j < 1:52). The associated track must have a longitudinal impact parameter jz0 sin j < 0:5 mm and a transverse impact parameter signi cance jd0j= (d0) < 5 where d0 is measured with respect to the beam line. Isolation requirements based on calorimeter and tracking quantities are used to reduce the background from non-prompt and fake (mim{ 6 { icked by a photon or a jet) electrons [57]. The isolation criteria are pT- and -dependent and ensure an e ciency of 90% for electrons with pT of 25 GeV and 99% for electrons at 60 GeV. These e ciencies are measured using electrons from Z boson decays [58]. Muon candidates [59] are identi ed by matching tracks in the muon spectrometer to tracks in the inner detector. The track pT is determined through a global t of the hits which takes into account the energy loss in the calorimeters. Muons are required to have pT > 25 GeV and to be within j j < 2:5. To reduce the background from muons originating from heavy- avour decays inside jets, muons are required to be separated by R > 0:4 from the nearest jet and to be isolated using track quality and isolation criteria similar those applied for the electrons. If a muon shares a track with an electron, it is likely to have undergone bremsstrahlung and hence the electron is not selected. Jets are reconstructed using the anti-kt algorithm [60] implemented in the FastJet package [61]. The four-momentum recombination scheme is used and the jet mass is de ned as the mass deduced from the four-momentum sum of all jet constituents [62, 63]. Two types of anti-kt jets are considered: so-called small-R jets with radius parameter R = 0:4 and large-R jets with radius parameter R = 1:0. Jet reconstruction in the calorimeter starts from topological clusters calibrated to be consistent with expected electromagnetic or hadronic cluster shapes using corrections determined in simulation and inferred from test beam data. Jet four-momenta are then corrected for pile-up e ects using the jetarea method [64]. In order to reduce the number of small-R jets originating from pile-up, an additional selection criterion based on a jet-vertex tagging (JVT) technique is applied. The JVT is a likelihood discriminant that combines information from several track-based variables [65] and the criterion is only applied to small-R jets with pT < 60 GeV and j j < 2:4. Small-R jets are calibrated using an energy- and -dependent simulation-based calibration scheme with in situ corrections based on data [62, 66], and are accepted if they have pT > 25 GeV and j j < 2:5. Objects can satisfy both the jets and leptons selection criteria and as such a procedure called \overlap removal" is applied in order to associate objects to a unique hypothesis. To prevent double-counting of electron energy deposits as jets, the closest small-R jet lying R < 0:2 from a reconstructed electron is discarded. Subsequently, to reduce the impact of non-prompt leptons, if an electron is R < 0:4 from a small-R jet, then that electron is removed. If a small-R jet has fewer than three tracks and is R < 0:4 from a muon, the small-R jet is removed. Finally, the muon is removed if it is R < 0:4 from a small-R jet which has at least three tracks. Tracks are associated to jets via a ghost-matching technique [64] in which the tracks momenta are scaled to a very small value and their four-vectors included in the jet clustering algorithm. Tracks resulting as jet constituents are then de ned to be associated with the jet [67]. The purity of the selected tt sample is improved by identifying small-R jets containing b-hadrons. This identi cation exploits the long decay time of b-hadrons and the invariant mass of the tracks associated to the corresponding reconstructed secondary vertex, which is several GeV larger than that in jets originating from gluons or light- avour quarks. Information from the track impact parameters, secondary vertex location and decay topology are combined in a multivariate algorithm (MV2c20). The operating point used corresponds { 7 { to an overall 77% b-tagging e ciency in tt events, with a corresponding rejection of charmquark jets (light- avour and gluon jets) by a factor of 4.5 (140), respectively [68]. Large-R jets associated with hadronically decaying top quarks are selected over jets originating from the fragmentation of other quarks or gluons by requiring that they contain several high-pT objects and have a mass compatible with the top-quark mass. A trimming algorithm [69] is applied to large-R jets to mitigate the impact of initial-state radiation, underlying-event activity and pile-up, with the goal of improving the mass resolution. Trimmed large-R jets are considered if they ful ll j j < 2.0 and pT > 300 GeV. Since largeR jets with invariant mass m < 50 GeV or pT > 1500 GeV are outside of a well-calibrated region of phase-space, they are excluded from the selection. Sub-jets, with radius Rsub = 0:2, are clustered starting from the large-R jet constituents by means of a kt algorithm. A sub-jet is selected only if it contains at least 5% of the total large-R jet transverse momentum, thereby removing the soft constituents from the large-R jet. The N -subjettiness N [70] measures the consistency of the large-R jet with its N sub-jets when the jet constituents are reclustered with a smaller-R jet algorithm. A top-tagging algorithm [71] is applied that depends on the calibrated jet mass and the N -subjettiness ratio 32 3= 2: going from pT = 300 GeV to 1500 GeV, the 32 upper requirement varies from 0.85 to 0.70, while the lower requirement on the minimum calibrated jet mass varies from 70 GeV to 120 GeV. These correspond to a loose working point with an approximately at top-tagging e ciency of 80% above pT of 400 GeV. The missing transverse momentum ETmiss is computed from the vector sum of the transverse momenta of the reconstructed calibrated physics objects (electrons, photons, semi-hadronically decaying leptons, jets and muons) together with the transverse energy deposited in the calorimeter cells, calibrated using tracking information, not associated with these objects [72]. The contribution from muons is added using their momenta. To avoid double-counting of energy, the muon energy loss in the calorimeters is subtracted in the ETmiss calculation. 4.2 Event selection at detector level The event selection comprises a set of requirements based on the general event quality and on the reconstructed objects, de ned above, that characterise the nal-state event topology. The analysis applies two non-exclusive event selections: one corresponding to a resolved topology and another targeting a boosted (collimated decay) topology. For both selections, events must have a reconstructed primary vertex with two or more associated tracks and contain exactly one reconstructed lepton candidate with pT > 25 GeV geometrically matched to a corresponding object at trigger level. For the resolved event selection, each event must also contain at least four small-R jets with pT > 25 GeV and j j < 2:5 of which at least two must be tagged as b-jets. For the boosted event selection, at least one small-R jet close to the lepton, i.e. with R(small-R jet, lepton) < 2:0, and at least one large-R top-tagged jet are required. The large-R jet must be well separated from the lepton, (large-R jet, lepton) > 1.0, and from the small-R jet associated with the lepton, R(large-R jet, small-R jet) > 1:5. In addition, it is required that at least one b-tagged small-R jet ful lls the following requirements: it { 8 { Topology Leptons Small-R jets Num. of small-R jets ETmiss, mTW Leptonic top Hadronic top b-tagging At least 2 b-tagged jets R(`, small-R jet) < 2:0 is b-tagged for both the resolved and boosted event selections. The description of the particle-level selection is in section 4.3. The description of the kinematic top-quark reconstruction for the resolved topology is in section 6. Leptonic (hadronic) top refers to the top quark that decays into a leptonically (hadronically) decaying W boson. is either inside the large-R jet, R(large-R jet, b-tagged jet) < 1:0, or it is the small-R jet associated with the lepton. Finally, in order to suppress the multijet background in the boosted topology the missing transverse momentum must be larger than 20 GeV and the sum of ETmiss and mTW (transverse mass of the W boson2) must be larger than 60 GeV. 4.3 Particle-level objects and ducial phase-space de nition Particle-level objects are de ned for simulated events in analogy to the detector-level objects described above. Only particles with a mean lifetime of > 30 ps are considered. The ducial phase-space for the measurements presented in this paper is de ned using a series of requirements applied to particle-level objects analogous to those used in the selection of the detector-level objects. The procedure explained in this section is applied to the tt signal only, since the background subtraction is performed before unfolding the data to particle level. Electrons and muons must not originate, either directly or through a decay, from a hadron in the MC particle record. This ensures that the lepton is from an electroweak decay without requiring a direct match to a W boson. The four-momenta of leptons are 2mTW = p2p`TETmiss(1 cos (`; ETmiss)), where ` stands for the charged lepton. { 9 { modi ed by adding the four-momenta of all photons within R = 0:1 and not originating from hadron decays, to take into account nal-state photon radiation. Such leptons are then required to have pT > 25 GeV and j j < 2:5. Electrons in the calorimeter's transition region (1:37 < j j < 1:52) are rejected at detector level but accepted in the ducial selection. This di erence is accounted for by the e ciency described in section 8. Particle-level jets are clustered using the anti-kt algorithm with radius parameter R = 0:4 or R = 1:0, starting from all stable particles, except for selected leptons (e, ) and their radiated photons, as well as neutrinos. Small-R particle-level jets are required to have pT > 25 GeV and j j < 2:5. Hadrons with pT > 5 GeV containing a b-quark are matched to small-R jets through a ghostmatching technique as described in ref. [64]. Neutrinos and charged leptons from hadron decays are included in particle-level jets. The large-R particle-level jets have to ful ll 300 GeV < pT < 1500 GeV, m > 50 GeV and j j < 2.0. A top-tag requirement is applied at particle-level: if the large-R jet has a mass larger than 100 GeV and 32 < 0:75, the large-R jet is considered to be top-tagged. No overlap removal criteria are applied to particle-level objects. decay. The particle-level missing transverse momentum is calculated from the four-vector sum of the neutrinos, discarding neutrinos from hadron decays, either directly or through a Particle-level events in the resolved topology are required to contain exactly one lepton and at least four small-R-jets passing the aforementioned requirements, with at least two of the small-R jets required to be b-tagged. For the boosted topology, after the same lepton requirements as in the resolved case, the events are required to contain at least one large-R jet that is also top-tagged and at least one b-tagged small-R jet ful lling the same R requirements as at detector-level as described in section 4.1. In addition, for the boosted topology, the missing transverse momentum must be larger than 20 GeV and the sum of ETmiss+mTW > 60 GeV. included in the ducial measurement. for each topology. Dilepton tt events where only one lepton satis es the ducial selection are by de nition Background determination and event yields Following from the event selection, various backgrounds, mostly involving real leptons, will contribute to the event yields. Data-driven techniques are used to estimate backgrounds that su er from large theoretical uncertainties like the production of W bosons in association with jets, or that rely on a precise simulation of the detector for backgrounds that involve jets mimicking the signature of charged leptons. The single-top-quark background is the largest background contribution in both the resolved and boosted topologies, amounting to 4{6% of the total event yield and 35% of the total background estimate. Shapes of all distributions of this background are modelled with HJEP1(207)9 MC simulation, and the event yields are normalised using calculations of its cross-section, as described in section 3. Multijet production processes, including all-hadronic tt production, have a large crosssection and mimic the lepton+jets signature due to jets misidenti ed as prompt leptons (fake leptons) or to semileptonic decays of heavy- avour hadrons (non-prompt real leptons). The multijet background is estimated directly from data by using a matrix-method [73]. The number of background events in the signal region is evaluated by applying e ciency factors (fake-lepton and real-lepton e ciencies) to the number of events satisfying a tight (signal) as well as a looser lepton selection. The fake-lepton e ciency is measured using data in control regions dominated by the multijet background with the real-lepton contribution subtracted using MC simulation. The real-lepton e ciency is extracted from a tag-and-probe technique using leptons from Z boson decays. The multijet background contributes to the total event yield at the level of approximately 3{4%, corresponding to approximately 20{31% of the total background estimate. The W +jets background represents the third-largest background in both topologies, amounting to approximately 1{4% of the total event yield and 20{36% of the total background estimate. The estimation of this background is performed using a combination of MC simulation and data-driven techniques. The Sherpa W +jets samples, normalised using the inclusive W boson NNLO cross-section, are used as a starting point while the absolute normalisation and the heavy- avour (HF) fractions of this process, which are a ected by large theoretical uncertainties, are determined from data. The overall W +jets normalisation is obtained by exploiting the expected charge asymmetry in the production of W + and W bosons in pp collisions. This asymmetry is predicted by theory [74] and evaluated using MC simulation, assuming other processes are symmetric in charge except for a small contamination from single-top-quark, ttV and W Z events, which is subtracted using MC simulation. The total number of W +jets events with a positively and negatively charged W boson (NW + + NW ) in the sample can thus be estimated with the following equation rMC + 1 NW + + NW = (D+ D ) ; (5.1) where rMC is the ratio of the number of events with positive leptons to the number of events with negative leptons in the MC simulation, and D+ and D are the numbers of events with positive and negative leptons in the data, respectively, corrected for the aforementioned non-W +jets charge-asymmetric contributions from simulation. The corrections due to generator mis-modelling of W boson production in association with jets of di erent avour (W + bb, W + cc, W + c, W + light avours) are estimated in a dedicated control sample in data which is enriched in W +jets events. To select the control sample, the same lepton and ETmiss selections are applied as used for the signal selection, but requiring exactly two small-R jets. First, the overall normalisation scaling factor is calculated using eq. (5.1) and applied to the W +jets events. Then the W +jets sample is split into the four di erent avour categories using information from the MC simulation. Using only events with exactly two jets and at least one b-tagged jet, the Process tt include the combined statistical and systematic uncertainties, excluding the systematic uncertainties related to the modelling of the tt system, as described in section 9. number of events with a positively and negatively charged lepton are counted for each avour category. A system of three equations is solved to obtain correction factors for the MC-based HF fractions. Two of the equations are constrained by the number of observed data events with a positively or negatively charged lepton. The number of data events is corrected by subtracting all background processes which do not originate from W +jets production. The third equation takes into account that the sum of the HF fractions, multiplied by the HF scaling factors, has to add up to unity. These HF correction factors are then extrapolated to the signal region using MC simulation, assuming constant relative rates for the signal and control regions. Taking into account the corrected HF scale factors, the overall normalisation factor is calculated again using eq. (5.1). This iterative procedure is repeated until the total predicted W +jets yield in the two-jet control region agrees with the data yield at the per-mille level. The detailed procedure can be found in ref. [75]. The background contributions from Z+jets, ttV and diboson events are obtained from MC generators, and the event yields are normalised as described in section 3. The total contribution from these processes is 1{2% of the total event yield or 11{14% of the total background. Dilepton top-quark pair events (including decays to leptons) can satisfy the event selection, contributing approximately 5% to the total event yield, and are considered in the analysis as signal at both the detector and particle levels. In the ducial phase-space de nition, semileptonic tt decays to leptons in lepton+jets tt events are considered as signal only if the lepton decays leptonically. Cases where both top quarks decay semileptonically to a lepton, and where subsequently the leptons decay semihadronically, are accounted for in the multijet background. As the individual e+jets and +jets channels have very similar corrections (as described in section 8) and give consistent results at detector level, they are combined by summing the distributions. The event yields are displayed in table 3 for data, simulated signal, and backgrounds. Figures 1{5 show,3 for di erent distributions, the comparison between data and predictions. The selection produces a sample with an expected background of 13% and 17% for the resolved and boosted topology, respectively. The overall di erence between data and prediction is 10% and 9% in the resolved and boosted topology, respectively. This is in fair agreement within the combined experimental systematic and theoretical uncertainties of the tt total cross-section used to normalise the signal MC sample (see section 3), although in opposite directions between the resolved and boosted selections. This is due to the fact that each selection covers a very di erent kinematic region, as described in section 4.3. 6 Kinematic reconstruction Since the tt production di erential cross-sections are measured as a function of observables involving the top quark and the tt system, an event reconstruction is performed in each topology. In the following, the leptonic (hadronic) top quark refers to the top quark that decays into a leptonically (hadronically) decaying W boson. In the boosted topology, the highest-pT large-R jet that satis es the top-tagging requirements is identi ed as the hadronic top-quark candidate. As shown in gure 5, the reconstructed invariant mass of the hadronic top quark has a peak at the W boson mass, indicating that not all of the top-quark decay products are always contained within the jet. However, the binning is chosen such that the correspondence of the hadronic-top-quark pT between detector level and particle level (where the large-R jet mass is required to be greater than 100 GeV) is still very good, with more than 55% of the events staying on the diagonal of the response matrix as shown in gure 10. For the resolved topology, the pseudo-top algorithm [6] reconstructs the four-momenta of the top quarks and their complete decay chain from nal-state objects, namely the charged lepton (electron or muon), missing transverse momentum, and four jets, two of which are b-tagged. In events with more than two b-tagged jets, only the two with the highest transverse momentum are considered as b-jets. The same algorithm is used to reconstruct the kinematic properties of top quarks as detector- and particle-level objects. The algorithm starts with the reconstruction of the neutrino four-momentum. While the x and y components of the neutrino momentum are set to the corresponding components of the missing transverse momentum, the z component is calculated by imposing the W boson mass constraint on the invariant mass of the charged-lepton-neutrino system. If the resulting quadratic equation has two real solutions, the one with the smaller value of jpzj is chosen. If the discriminant is negative, only the real part is considered. The leptonically decaying W boson is reconstructed from the charged lepton and the neutrino. The leptonic top quark is reconstructed from the leptonic W and the b-tagged jet closest in R to the charged lepton. The hadronic W boson is reconstructed from the two non-b-tagged jets 3All data as well as theory points are plotted at the bin centre of the x-axis throughout this paper. .de 1.2 Single top W+jets ttV Multijets tDt ata ttV Multijets Stat.+Syst. Unc. s t v E en2000 1500 1000 500 G t n e /s 25 vE 20 15 10 5 / r r 40 60 80 100 120 a a D D 50 100 150 200 Resolved Single top W+jets ttV ttV Multijets Stat.+Syst. Unc. r r 4 5 6 a a D D 7 8 Jet multiplicity 50 100 (d) 150 Jet pT [GeV] tector level: (a) lepton transverse momentum and (b) missing transverse momentum ETmiss, (c) jet multiplicity and (d) transverse momenta of selected jets. Data distributions are compared to predictions using Powheg+Pythia6 as the tt signal model. The hatched area indicates the combined statistical and systematic uncertainties in the total prediction, excluding systematic uncertainties related to the modelling of the tt system. Events beyond the range of the horizontal axis are included in the last bin. ATLAS Resolved ATLAS Resolved ttV detector level: (a) number of b-tagged jets and (b) leading b-tagged jet . Data distributions are compared to predictions using Powheg+Pythia6 as the tt signal model. The hatched area indicates the combined statistical and systematic uncertainties in the total prediction, excluding systematic uncertainties related to the modelling of the tt system. Events (below) beyond the range of the horizontal axis are included in the ( rst) last bin. tDt ata SWin+gjeletstop ttV ttV Multijets Stat.+Syst. Unc. 3 3 1 1 P P D Number of Large-R Jets detector level: (a) number of large-R jets and (b) large-R jet pT. Data distributions are compared to predictions using Powheg+Pythia6 as the tt signal model. The hatched area indicates the combined statistical and systematic uncertainties in the total prediction, excluding systematic uncertainties related to the modelling of the tt system. Events beyond the range of the horizontal axis are included in the last bin. itn 90 /U 80 s G / n e vE 100 80 60 40 20 ATLAS ttV Multijets Stat.+Syst. Unc. 800 800 1000 1000 Large-R jet pT [GeV] 100 100 100 100 200 200 /G 100 ve 80 E 60 40 20 . 1.4 Single top W+jets ttV ttV Multijets Stat.+Syst. Unc. 300 300 Emiss [GeV] T 500 500 400 400 n U n e P −2 −2 −1 −1 0 0 (b) ATLAS Boosted tt ttV ttV Multijets Stat.+Syst. Unc. 150 150 200 200 mTW [GeV] P D D V v v D D detector level: (a) lepton pT and (b) pseudorapidity, the (c) missing transverse momentum ETmiss and (d) transverse mass of the W boson. Data distributions are compared to predictions using Powheg+Pythia6 as the tt signal model. The hatched area indicates the combined statistical and systematic uncertainties in the total prediction, excluding systematic uncertainties related to the modelling of the tt system. Events (below) beyond the range of the horizontal axis are included in the ( rst) last bin. Resolved ×103 ATLAS ttV ttV Multijets Stat.+Syst. Unc. 1 1 τt,had 32 E1400 1200 1000 800 600 400 200 en1400 v E1200 1000 800 600 400 200 V P Single top W+jets ttV ttV Multijets Stat.+Syst. Unc. 100 100 150 150 (d) 200 200 250 250 mt,had [GeV] 300 300 D masses of the (a) leptonic and (b) hadronic top quark candidates in the resolved topology; (c) hadronic top candidate 32 and (d) mass in the boosted topology. Data distributions are compared to predictions using Powheg+Pythia6 as the tt signal model. The hatched area indicates the combined statistical and systematic uncertainties in the total prediction, excluding systematic uncertainties related to the modelling of the tt system. Events beyond the range of the horizontal axis are included in the last bin. whose invariant mass is closest to the mass of the W boson. This choice yields the best performance of the algorithm in terms of the correspondence between the detector and particle levels. Finally, the hadronic top quark is reconstructed from the hadronic W boson and the other b-jet. 7 Measured observables A set of measurements of the tt production di erential cross-sections are presented as a function of di erent kinematic observables. These include the transverse momentum of the hadronically decaying top quark (ptT;had) and absolute value of its rapidity ( yt;had ) for both the resolved and boosted topologies, as well as the absolute value of the rapidity ( ytt ), invariant mass (mtt) and transverse momentum (ptTt) of the tt system in the resolved topology only. The hadronic top quark is chosen in the resolved topology over the leptonic top quark due to better resolution and correspondence to the particle level. The tt system is not reconstructed in the boosted topology as the leptonic top quark reconstruction would necessitate some optimisation in order to ensure good correspondence between detector level and particle level for the tt system. These observables, shown in gures 6 and 7 for the top quark and the tt system, respectively, were measured previously by the ATLAS experiment using the 7 and 8 TeV data sets [5, 6, 8, 10], except for yt;had in the boosted topology, which is presented here for the rst time. The level of agreement between data and prediction is within the quoted uncertainties for yt;had , mtt, ptTt and ytt , while for the ptT;had distribution, a linear mismodelling of the data by the prediction is observed. 8 Unfolding procedure The measured di erential cross-sections are obtained from the detector-level distributions using an unfolding technique which corrects for detector e ects. The iterative Bayesian method [76] as implemented in RooUnfold [77] is used. For each observable, the unfolding starts from the detector-level distribution (Nreco), after subtracting the backgrounds (Nbg). Next, the acceptance correction facc corrects for events that are generated outside the ducial phase-space but pass the detector-level selection. In the resolved topology, in order to separate resolution and combinatorial e ects leading to events migrating from a particle- to various detector-level bins, distributions are corrected such that detector- and particle-level objects forming the pseudo-top quarks are angularly well matched, leading to a better correspondence between the particle and detector levels. The matching correction fmatch, evaluated in the simulation, accounts for the corresponding e ciency. The matching is performed using geometrical criteria based on the distance R. Each particle e ( ) is matched to the closest detector-level e ( ) within R < 0:02. Particle-level jets forming the pseudo-top quark candidates at the particle level are then required to be geometrically matched to the corresponding jets (respecting their assignment to the pseudo-top candidates) at the detector level within R < 0:35, allowing for a swap of light jets forming the hadronically decaying W -boson candidate. HJEP1(207)9 . 1.4 0.5 1.5 2 Distributions of observables in the combined `+jets channel at detector level: (a) hadronic top-quark transverse momentum p and (b) absolute value of the rapidity yt;had t;had T in the resolved topology, and the same variables in the boosted topology (c), (d). Data distributions are compared to predictions, using Powheg+Pythia6 as the tt signal model. The hatched area indicates the combined statistical and systematic uncertainties (described in section 9) in the total prediction, excluding systematic uncertainties related to the modelling of the tt system. p a 200 R it 180 n U 160 / 80 60 40 20 ATLAS s = 13 TeV using the ATLAS detector, Eur. Phys. J. C 77 channel in pp collisions at p (2017) 292 [arXiv:1612.05220] [INSPIRE]. (2017) 092001 [arXiv:1610.04191] [INSPIRE]. JINST 3 S08003 [INSPIRE]. [13] CMS collaboration, Measurement of di erential cross sections for top quark pair production using the lepton+jets nal state in proton-proton collisions at 13 TeV, Phys. Rev. D 95 [14] ATLAS collaboration, The ATLAS experiment at the CERN Large Hadron Collider, 2008 [15] ATLAS collaboration, ATLAS insertable B-layer technical design report, CERN-LHCC-2010-013, CERN, Geneva Switzerland, (2010) [ATLAS-TDR-19-ADD-1]. 77 (2017) 317 [arXiv:1611.09661] [INSPIRE]. [17] ATLAS collaboration, Luminosity determination in pp collisions at p s = 8 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 653 [arXiv:1608.03953] [INSPIRE]. CERN, Geneva Switzerland, (2012). Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE]. [20] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, [arXiv:1005.4568] [INSPIRE]. Meth. A 506 (2003) 250 [INSPIRE]. [22] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. [23] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. [24] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE]. p [25] ATLAS collaboration, Simulation of top quark production for the ATLAS experiment at s = 13 TeV, ATL-PHYS-PUB-2016-004, CERN, Geneva Switzerland, (2016). [26] S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [27] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 [28] M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 (2001) 152 [INSPIRE]. [arXiv:0803.0883] [INSPIRE]. Geneva Switzerland, (2014). [29] ATLAS collaboration, ATLAS run 1 PYTHIA8 tunes, ATL- PHYS-PUB-2014 -021, CERN, [30] J. Alwall et al., The automated computation of tree-level and next-to-leading order di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [31] ATLAS collaboration, Performance of the Fast ATLAS Tracking Simulation (FATRAS) and the ATLAS Fast Calorimeter Simulation (FastCaloSim) with single particles, ATL-SOFT-PUB-2014-01, CERN, Geneva Switzerland, (2014). [32] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. [33] M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE]. HJEP1(207)9 [35] M. Beneke, P. Falgari, S. Klein and C. Schwinn, Hadronic top-quark pair production with NNLL threshold resummation, Nucl. Phys. B 855 (2012) 695 [arXiv:1109.1536] [INSPIRE]. [36] P. Barnreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: rst genuine NNLO QCD corrections to qq ! tt + X, Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE]. [37] M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE]. [38] M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE]. [39] M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O( S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE]. [40] P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] (2006) 026 [hep-ph/0603175] [INSPIRE]. JHEP 10 (2003) 046 [hep-ph/0303013] [INSPIRE]. 074018 [arXiv:1005.3457] [INSPIRE]. [41] T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6:4 physics and manual, JHEP 05 [42] D. Stump et al., Inclusive jet production, parton distributions and the search for new physics, [43] P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) [arXiv:0811.4622] [INSPIRE]. [arXiv:0808.3674] [INSPIRE]. [44] N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503 [arXiv:1103.2792] [INSPIRE]. [45] M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer and M. Wiedermann, HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE]. [46] P. Kant et al., HatHor for single top-quark production: updated predictions and uncertainty estimates for single top-quark production in hadronic collisions, Comput. Phys. Commun. 191 (2015) 74 [arXiv:1406.4403] [INSPIRE]. [47] T. Gleisberg et al., Event generation with SHERPA 1:1, JHEP 02 (2009) 007 [48] T. Gleisberg and S. Hoche, Comix, a new matrix element generator, JHEP 12 (2008) 039 Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE]. boson in association with jets at ATLAS in run 2, ATL-PHYS-PUB-2016-003, CERN, Geneva [53] ATLAS collaboration, Multi-boson simulation for 13 TeV ATLAS analyses, ATL-PHYS-PUB-2016-002, CERN, Geneva Switzerland, (2016). [54] ATLAS collaboration, Modelling of the ttH and ttV (V = W; Z) processes for p s = 13 TeV ATLAS analyses, ATL-PHYS-PUB-2016-005, CERN, Geneva Switzerland, (2016). [55] J. Alwall et al., The automated computation of tree-level and next-to-leading order di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [56] ATLAS collaboration, Expected electron performance in the ATLAS experiment, ATL-PHYS-PUB-2011-006, CERN, Geneva Switzerland, (2011). [57] ATLAS collaboration, Measurement of the tt production cross-section using e events with b-tagged jets in pp collisions at p s = 13 TeV with the ATLAS detector, Phys. Lett. B 761 (2016) 136 [Erratum ibid. B 772 (2017) 879] [arXiv:1606.02699] [INSPIRE]. [58] ATLAS collaboration, Electron e ciency measurements with the ATLAS detector using the 2012 LHC proton-proton collision data, ATLAS-CONF-2014-032, CERN, Geneva Switzerland, (2014). [59] ATLAS collaboration, Muon reconstruction performance of the ATLAS detector in s = 13 TeV, Eur. Phys. J. C 76 (2016) 292 proton-proton collision data at p [arXiv:1603.05598] [INSPIRE]. 063 [arXiv:0802.1189] [INSPIRE]. [arXiv:1111.6097] [INSPIRE]. proton-proton collisions at p 17 [arXiv:1406.0076] [INSPIRE]. proton-proton collisions at p [arXiv:1306.4945] [INSPIRE]. [arXiv:0802.1188] [INSPIRE]. at p [arXiv:1510.03823] [INSPIRE]. HJEP1(207)9 [63] ATLAS collaboration, Performance of jet substructure techniques for large-R jets in s = 7 TeV using the ATLAS detector, JHEP 09 (2013) 076 [64] M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP 04 (2008) 005 [65] ATLAS collaboration, Performance of pile-up mitigation techniques for jets in pp collisions s = 8 TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 581 [60] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) [62] ATLAS collaboration, Jet energy measurement and its systematic uncertainty in s = 7 TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 072002 [arXiv:1703.09665] [INSPIRE]. [66] ATLAS collaboration, Jet energy scale measurements and their systematic uncertainties in s = 13 TeV with the ATLAS detector, Phys. Rev. D 96 (2017) [67] ATLAS collaboration, Pile-up subtraction and suppression for jets in ATLAS, ATLAS-CONF-2013-083, CERN, Geneva Switzerland, (2013). [68] ATLAS collaboration, Expected performance of the ATLAS b-tagging algorithms in run-2, ATL-PHYS-PUB-2015-022, CERN, Geneva Switzerland, (2015). [INSPIRE]. (2011) 015 [arXiv:1011.2268] [INSPIRE]. [70] J. Thaler and K. Van Tilburg, Identifying boosted objects with N -subjettiness, JHEP 03 HJEP1(207)9 [71] ATLAS collaboration, Boosted hadronic top identi cation at ATLAS for early 13 TeV data, ATL-PHYS-PUB-2015-053, CERN, Geneva Switzerland, (2015). [72] ATLAS collaboration, Performance of missing transverse momentum reconstruction in proton-proton collisions at 7 TeV with ATLAS, Eur. Phys. J. C 72 (2012) 1844 [arXiv:1108.5602] [INSPIRE]. [73] ATLAS collaboration, Measurement of the top quark pair production cross-section with ATLAS in the single lepton channel, Phys. Lett. B 711 (2012) 244 [arXiv:1201.1889] [INSPIRE]. [74] F. Halzen, Y.S. Jeong and C.S. Kim, Charge asymmetry of weak boson production at the LHC and the charm content of the proton, Phys. Rev. D 88 (2013) 073013 [arXiv:1304.0322] [INSPIRE]. [75] ATLAS collaboration, A search for tt resonances using lepton-plus-jets events in s = 8 TeV with the ATLAS detector, JHEP 08 (2015) 148 proton-proton collisions at p [arXiv:1505.07018] [INSPIRE]. Instrum. Meth. A 362 (1995) 487 [INSPIRE]. [76] G. D'Agostini, A multidimensional unfolding method based on Bayes' theorem, Nucl. p [77] T. Adye, Unfolding algorithms and tests using RooUnfold, arXiv:1105.1160 [INSPIRE]. [78] ATLAS collaboration, Jet energy measurement with the ATLAS detector in proton-proton collisions at p s = 7 TeV, Eur. Phys. J. C 73 (2013) 2304 [arXiv:1112.6426] [INSPIRE]. [79] ATLAS collaboration, Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC, Eur. Phys. J. C 73 (2013) 2305 [arXiv:1203.1302] [INSPIRE]. [80] ATLAS collaboration, Jet energy resolution in proton-proton collisions at ps = 7 TeV recorded in 2010 with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2306 [arXiv:1210.6210] [INSPIRE]. [81] ATLAS collaboration, Jet mass and substructure of inclusive jets in p s = 7 TeV pp collisions with the ATLAS experiment, JHEP 05 (2012) 128 [arXiv:1203.4606] [INSPIRE]. [82] ATLAS collaboration, Measurement of large radius jet mass reconstruction performance at s = 8 TeV using the ATLAS detector, ATLAS-CONF-2016-008, CERN, Geneva [83] ATLAS collaboration, Calibration of b-tagging using dileptonic top pair events in a combinatorial likelihood approach with the ATLAS experiment, ATLAS-CONF-2014-004, CERN, Geneva Switzerland, (2014). [84] ATLAS collaboration, Measurement of the b-tag e ciency in a sample of jets containing muons with 5 fb 1 of data from the ATLAS detector, ATLAS-CONF-2012-043, CERN, Geneva Switzerland, (2012). [85] ATLAS collaboration, Measurement of the mistag rate with 5 fb 1 of data collected by the ATLAS detector, ATLAS-CONF-2012-040, CERN, Geneva Switzerland, (2012). [86] ATLAS collaboration, Identi cation of jets containing b-hadrons with recurrent neural networks at the ATLAS experiment, ATL-PHYS-PUB-2017-003, CERN, Geneva Switzerland, [87] ATLAS collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data, Eur. Phys. J. C 72 (2012) 1909 [arXiv:1110.3174] [INSPIRE]. [88] ATLAS collaboration, Electron e ciency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data, ATLAS-CONF-2016-024, CERN, Geneva using data collected in 2015 at p Switzerland, (2016). [89] ATLAS collaboration, Electron and photon energy calibration with the ATLAS detector s = 13 TeV, ATL-PHYS-PUB-2016-015, CERN, Geneva [90] J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE]. [91] J.H. Kuhn, A. Scharf and P. Uwer, Electroweak corrections to top-quark pair production in quark-antiquark annihilation, Eur. Phys. J. C 45 (2006) 139 [hep-ph/0508092] [INSPIRE]. [92] J.H. Kuhn, A. Scharf and P. Uwer, Electroweak e ects in top-quark pair production at hadron colliders, Eur. Phys. J. C 51 (2007) 37 [hep-ph/0610335] [INSPIRE]. [93] W. Bernreuther, M. Fucker and Z.-G. Si, Electroweak corrections to tt production at hadron colliders, Nuovo Cim. B 123 (2008) 1036 [arXiv:0808.1142] [INSPIRE]. [94] A.V. Manohar and M. Trott, Electroweak Sudakov corrections and the top quark forward-backward asymmetry, Phys. Lett. B 711 (2012) 313 [arXiv:1201.3926] [INSPIRE]. [95] J.H. Kuhn, A. Scharf and P. Uwer, Weak interactions in top-quark pair production at hadron colliders: an update, Phys. Rev. D 91 (2015) 014020 [arXiv:1305.5773] [INSPIRE]. [96] M. Czakon, D. Heymes and A. Mitov, Dynamical scales for multi-TeV top-pair production at the LHC, JHEP 04 (2017) 071 [arXiv:1606.03350] [INSPIRE]. [97] M. Czakon, D. Heymes and A. Mitov, High-precision di erential predictions for top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003 [arXiv:1511.00549] [INSPIRE]. [98] ATLAS collaboration, ATLAS computing acknowledgements 2016{2017, ATL-GEN-PUB-2016-002, CERN, Geneva Switzerland, (2016). M. Aaboud137d, G. Aad88, B. Abbott115, J. Abdallah8, O. Abdinov12; , B. Abeloos119, S.H. Abidi161, O.S. AbouZeid139, N.L. Abraham151, H. Abramowicz155, H. Abreu154, R. Abreu118, Y. Abulaiti148a;148b, B.S. Acharya167a;167b;a, S. Adachi157, L. Adamczyk41a, J. Adelman110, M. Adersberger102, T. Adye133, A.A. A older139, T. Agatonovic-Jovin14, C. Agheorghiesei28c, J.A. Aguilar-Saavedra128a;128f, S.P. Ahlen24, F. Ahmadov68;b, G. Aielli135a;135b, S. Akatsuka71, H. Akerstedt148a;148b, T.P.A. Akesson84, E. Akilli52, A.V. Akimov98, G.L. Alberghi22a;22b, J. Albert172, P. Albicocco50, M.J. Alconada Verzini74, M. Aleksa32, I.N. Aleksandrov68, C. Alexa28b, G. Alexander155, T. Alexopoulos10, M. Alhroob115, B. Ali130, M. Aliev76a;76b, G. Alimonti94a, J. Alison33, S.P. Alkire38, B.M.M. Allbrooke151, B.W. Allen118, P.P. Allport19, A. Aloisio106a;106b, A. Alonso39, F. Alonso74, C. Alpigiani140, A.A. Alshehri56, M. Alstaty88, B. Alvarez Gonzalez32, D. Alvarez Piqueras170, M.G. Alviggi106a;106b, B.T. Amadio16, Y. Amaral Coutinho26a, C. Amelung25, D. Amidei92, S.P. Amor Dos Santos128a;128c, A. Amorim128a;128b, S. Amoroso32, G. Amundsen25, C. Anastopoulos141, L.S. Ancu52, N. Andari19, T. Andeen11, C.F. Anders60b, J.K. Anders77, K.J. Anderson33, A. Andreazza94a;94b, V. Andrei60a, S. Angelidakis9, I. Angelozzi109, A. Angerami38, A.V. Anisenkov111;c, N. Anjos13, A. Annovi126a;126b, C. Antel60a, M. Antonelli50, A. Antonov100; , D.J. Antrim166, F. Anulli134a, M. Aoki69, L. Aperio Bella32, G. Arabidze93, Y. Arai69, J.P. Araque128a, V. Araujo Ferraz26a, A.T.H. Arce48, R.E. Ardell80, F.A. Arduh74, J-F. Arguin97, S. Argyropoulos66, M. Arik20a, A.J. Armbruster145, L.J. Armitage79, O. Arnaez161, H. Arnold51, M. Arratia30, O. Arslan23, A. Artamonov99, G. Artoni122, S. Artz86, S. Asai157, N. Asbah45, A. Ashkenazi155, L. Asquith151, K. Assamagan27, R. Astalos146a, M. Atkinson169, N.B. Atlay143, K. Augsten130, G. Avolio32, B. Axen16, M.K. Ayoub119, G. Azuelos97;d, A.E. Baas60a, M.J. Baca19, H. Bachacou138, K. Bachas76a;76b, M. Backes122, M. Backhaus32, P. Bagnaia134a;134b, H. Bahrasemani144, J.T. Baines133, M. Bajic39, O.K. Baker179, E.M. Baldin111;c, P. Balek175, F. Balli138, W.K. Balunas124, E. Banas42, Sw. Banerjee176;e, A.A.E. Bannoura178, L. Barak32, E.L. Barberio91, D. Barberis53a;53b, M. Barbero88, T. Barillari103, M-S Barisits32, T. Barklow145, N. Barlow30, S.L. Barnes36c, B.M. Barnett133, R.M. Barnett16, Z. Barnovska-Blenessy36a, A. Baroncelli136a, G. Barone25, A.J. Barr122, L. Barranco Navarro170, F. Barreiro85, J. Barreiro Guimar~aes da Costa35a, R. Bartoldus145, A.E. Barton75, P. Bartos146a, A. Basalaev125, A. Bassalat119;f, R.L. Bates56, S.J. Batista161, J.R. Batley30, M. Battaglia139, M. Bauce134a;134b, F. Bauer138, H.S. Bawa145;g, J.B. Beacham113, M.D. Beattie75, T. Beau83, P.H. Beauchemin165, P. Bechtle23, H.P. Beck18;h, K. Becker122, M. Becker86, M. Beckingham173, C. Becot112, A.J. Beddall20e, A. Beddall20b, V.A. Bednyakov68, M. Bedognetti109, C.P. Bee150, T.A. Beermann32, M. Begalli26a, M. Begel27, J.K. Behr45, A.S. Bell81, G. Bella155, L. Bellagamba22a, A. Bellerive31, M. Bellomo154, K. Belotskiy100, O. Beltramello32, N.L. Belyaev100, O. Benary155; , D. Benchekroun137a, M. Bender102, K. Bendtz148a;148b, N. Benekos10, Y. Benhammou155, E. Benhar Noccioli179, J. Benitez66, D.P. Benjamin48, M. Benoit52, J.R. Bensinger25, S. Bentvelsen109, L. Beresford122, M. Beretta50, D. Berge109, E. Bergeaas Kuutmann168, N. Berger5, J. Beringer16, S. Berlendis58, N.R. Bernard89, G. Bernardi83, C. Bernius145, F.U. Bernlochner23, T. Berry80, P. Berta131, C. Bertella35a, G. Bertoli148a;148b, F. Bertolucci126a;126b, I.A. Bertram75, C. Bertsche45, D. Bertsche115, G.J. Besjes39, O. Bessidskaia Bylund148a;148b, M. Bessner45, N. Besson138, C. Betancourt51, A. Bethani87, S. Bethke103, A.J. Bevan79, R.M. Bianchi127, O. Biebel102, D. Biedermann17, R. Bielski87, N.V. Biesuz126a;126b, M. Biglietti136a, J. Bilbao De Mendizabal52, T.R.V. Billoud97, H. Bilokon50, M. Bindi57, A. Bingul20b, C. Bini134a;134b, S. Biondi22a;22b, T. Bisanz57, C. Bittrich47, D.M. Bjergaard48, C.W. Black152, J.E. Black145, K.M. Black24, D. Blackburn140, HJEP1(207)9 S. Blunier34a, G.J. Bobbink109, V.S. Bobrovnikov111;c, S.S. Bocchetta84, A. Bocci48, C. Bock102, M. Boehler51, D. Boerner178, D. Bogavac102, A.G. Bogdanchikov111, C. Bohm148a, V. Boisvert80, P. Bokan168;i, T. Bold41a, A.S. Boldyrev101, A.E. Bolz60b, M. Bomben83, M. Bona79, M. Boonekamp138, A. Borisov132, G. Borissov75, J. Bortfeldt32, D. Bortoletto122, V. Bortolotto62a;62b;62c, D. Boscherini22a, M. Bosman13, J.D. Bossio Sola29, J. Boudreau127, J. Bou ard2, E.V. Bouhova-Thacker75, D. Boumediene37, C. Bourdarios119, S.K. Boutle56, A. Boveia113, J. Boyd32, I.R. Boyko68, J. Bracinik19, A. Brandt8, G. Brandt57, O. Brandt60a, U. Bratzler158, B. Brau89, J.E. Brau118, W.D. Breaden Madden56, K. Brendlinger45, A.J. Brennan91, L. Brenner109, R. Brenner168, S. Bressler175, D.L. Briglin19, T.M. Bristow49, D. Britton56, D. Britzger45, F.M. Brochu30, I. Brock23, R. Brock93, G. Brooijmans38, T. Brooks80, W.K. Brooks34b, J. Brosamer16, E. Brost110, J.H Broughton19, P.A. Bruckman de Renstrom42, D. Bruncko146b, A. Bruni22a, G. Bruni22a, L.S. Bruni109, BH Brunt30, M. Bruschi22a, N. Bruscino23, P. Bryant33, L. Bryngemark45, T. Buanes15, Q. Buat144, P. Buchholz143, A.G. Buckley56, I.A. Budagov68, F. Buehrer51, M.K. Bugge121, O. Bulekov100, D. Bullock8, T.J. Burch110, H. Burckhart32, S. Burdin77, C.D. Burgard51, A.M. Burger5, B. Burghgrave110, K. Burka42, S. Burke133, I. Burmeister46, J.T.P. Burr122, E. Busato37, D. Buscher51, V. Buscher86, P. Bussey56, J.M. Butler24, C.M. Buttar56, J.M. Butterworth81, P. Butti32, W. Buttinger27, A. Buzatu35c, A.R. Buzykaev111;c, S. Cabrera Urban170, D. Caforio130, V.M. Cairo40a;40b, O. Cakir4a, N. Calace52, P. Cala ura16, A. Calandri88, G. Calderini83, P. Calfayan64, G. Callea40a;40b, L.P. Caloba26a, S. Calvente Lopez85, D. Calvet37, S. Calvet37, T.P. Calvet88, R. Camacho Toro33, S. Camarda32, P. Camarri135a;135b, D. Cameron121, R. Caminal Armadans169, C. Camincher58, S. Campana32, M. Campanelli81, A. Camplani94a;94b, A. Campoverde143, V. Canale106a;106b, M. Cano Bret36c, J. Cantero116, T. Cao155, M.D.M. Capeans Garrido32, I. Caprini28b, M. Caprini28b, M. Capua40a;40b, R.M. Carbone38, R. Cardarelli135a, F. Cardillo51, I. Carli131, T. Carli32, G. Carlino106a, B.T. Carlson127, L. Carminati94a;94b, R.M.D. Carney148a;148b, S. Caron108, E. Carquin34b, S. Carra94a;94b, G.D. Carrillo-Montoya32, J. Carvalho128a;128c, D. Casadei19, M.P. Casado13;j, M. Casolino13, D.W. Casper166, R. Castelijn109, V. Castillo Gimenez170, N.F. Castro128a;k, A. Catinaccio32, J.R. Catmore121, A. Cattai32, J. Caudron23, V. Cavaliere169, E. Cavallaro13, D. Cavalli94a, M. Cavalli-Sforza13, V. Cavasinni126a;126b, E. Celebi20a, F. Ceradini136a;136b, L. Cerda Alberich170, A.S. Cerqueira26b, A. Cerri151, L. Cerrito135a;135b, F. Cerutti16, A. Cervelli18, S.A. Cetin20d, A. Chafaq137a, D. Chakraborty110, S.K. Chan59, W.S. Chan109, Y.L. Chan62a, P. Chang169, J.D. Chapman30, D.G. Charlton19, C.C. Chau161, C.A. Chavez Barajas151, S. Che113, S. Cheatham167a;167c, A. Chegwidden93, S. Chekanov6, S.V. Chekulaev163a, G.A. Chelkov68;l, M.A. Chelstowska32, C. Chen67, H. Chen27, S. Chen35b, S. Chen157, X. Chen35c;m, Y. Chen70, H.C. Cheng92, H.J. Cheng35a, A. Cheplakov68, E. Cheremushkina132, R. Cherkaoui El Moursli137e, V. Chernyatin27; , E. Cheu7, L. Chevalier138, V. Chiarella50, G. Chiarelli126a;126b, G. Chiodini76a, A.S. Chisholm32, A. Chitan28b, Y.H. Chiu172, M.V. Chizhov68, K. Choi64, A.R. Chomont37, S. Chouridou156, V. Christodoulou81, D. Chromek-Burckhart32, M.C. Chu62a, J. Chudoba129, A.J. Chuinard90, J.J. Chwastowski42, L. Chytka117, A.K. Ciftci4a, D. Cinca46, V. Cindro78, I.A. Cioara23, C. Ciocca22a;22b, A. Ciocio16, F. Cirotto106a;106b, Z.H. Citron175, M. Citterio94a, M. Ciubancan28b, A. Clark52, B.L. Clark59, M.R. Clark38, P.J. Clark49, R.N. Clarke16, C. Clement148a;148b, Y. Coadou88, M. Cobal167a;167c, A. Coccaro52, J. Cochran67, L. Colasurdo108, B. Cole38, A.P. Colijn109, J. Collot58, T. Colombo166, P. Conde Muin~o128a;128b, E. Coniavitis51, S.H. Connell147b, I.A. Connelly87, S. Constantinescu28b, G. Conti32, F. Conventi106a;n, M. Cooke16, A.M. Cooper-Sarkar122, F. Cormier171, K.J.R. Cormier161, M. Corradi134a;134b, F. Corriveau90;o, A. Cortes-Gonzalez32, HJEP1(207)9 B.E. Cox87, K. Cranmer112, S.J. Crawley56, R.A. Creager124, G. Cree31, S. Crepe-Renaudin58, F. Crescioli83, W.A. Cribbs148a;148b, M. Cristinziani23, V. Croft108, G. Crosetti40a;40b, A. Cueto85, T. Cuhadar Donszelmann141, A.R. Cukierman145, J. Cummings179, M. Curatolo50, J. Cuth86, H. Czirr143, P. Czodrowski32, G. D'amen22a;22b, S. D'Auria56, M. D'Onofrio77, M.J. Da Cunha Sargedas De Sousa128a;128b, C. Da Via87, W. Dabrowski41a, T. Dado146a, T. Dai92, O. Dale15, F. Dallaire97, C. Dallapiccola89, M. Dam39, J.R. Dandoy124, N.P. Dang176, A.C. Daniells19, N.S. Dann87, M. Danninger171, M. Dano Ho mann138, V. Dao150, G. Darbo53a, S. Darmora8, J. Dassoulas3, A. Dattagupta118, T. Daubney45, W. Davey23, C. David45, T. Davidek131, M. Davies155, P. Davison81, E. Dawe91, I. Dawson141, K. De8, R. de Asmundis106a, A. De Benedetti115, S. De Castro22a;22b, S. De Cecco83, N. De Groot108, P. de Jong109, H. De la Torre93, F. De Lorenzi67, A. De Maria57, D. De Pedis134a, A. De Salvo134a, U. De Sanctis135a;135b, A. De Santo151, K. De Vasconcelos Corga88, J.B. De Vivie De Regie119, W.J. Dearnaley75, R. Debbe27, C. Debenedetti139, D.V. Dedovich68, N. Dehghanian3, I. Deigaard109, M. Del Gaudio40a;40b, J. Del Peso85, T. Del Prete126a;126b, D. Delgove119, F. Deliot138, C.M. Delitzsch52, A. Dell'Acqua32, L. Dell'Asta24, M. Dell'Orso126a;126b, M. Della Pietra106a;106b, D. della Volpe52, M. Delmastro5, C. Delporte119, P.A. Delsart58, D.A. DeMarco161, S. Demers179, M. Demichev68, A. Demilly83, S.P. Denisov132, D. Denysiuk138, D. Derendarz42, J.E. Derkaoui137d, F. Derue83, P. Dervan77, K. Desch23, C. Deterre45, K. Dette46, M.R. Devesa29, P.O. Deviveiros32, A. Dewhurst133, S. Dhaliwal25, F.A. Di Bello52, A. Di Ciaccio135a;135b, L. Di Ciaccio5, W.K. Di Clemente124, C. Di Donato106a;106b, A. Di Girolamo32, B. Di Girolamo32, B. Di Micco136a;136b, R. Di Nardo32, K.F. Di Petrillo59, A. Di Simone51, R. Di Sipio161, D. Di Valentino31, C. Diaconu88, M. Diamond161, F.A. Dias39, M.A. Diaz34a, E.B. Diehl92, J. Dietrich17, S. D ez Cornell45, A. Dimitrievska14, J. Dingfelder23, P. Dita28b, S. Dita28b, F. Dittus32, F. Djama88, T. Djobava54b, J.I. Djuvsland60a, M.A.B. do Vale26c, D. Dobos32, M. Dobre28b, C. Doglioni84, J. Dolejsi131, Z. Dolezal131, M. Donadelli26d, S. Donati126a;126b, P. Dondero123a;123b, J. Donini37, J. Dopke133, A. Doria106a, M.T. Dova74, A.T. Doyle56, E. Drechsler57, M. Dris10, Y. Du36b, J. Duarte-Campderros155, A. Dubreuil52, E. Duchovni175, G. Duckeck102, A. Ducourthial83, O.A. Ducu97;p, D. Duda109, A. Dudarev32, A.Chr. Dudder86, E.M. Du eld16, L. Du ot119, M. Duhrssen32, M. Dumancic175, A.E. Dumitriu28b, A.K. Duncan56, M. Dunford60a, H. Duran Yildiz4a, M. Duren55, A. Durglishvili54b, D. Duschinger47, B. Dutta45, M. Dyndal45, C. Eckardt45, K.M. Ecker103, R.C. Edgar92, T. Eifert32, G. Eigen15, K. Einsweiler16, T. Ekelof168, M. El Kacimi137c, R. El Kossei 88, V. Ellajosyula88, M. Ellert168, S. Elles5, F. Ellinghaus178, A.A. Elliot172, N. Ellis32, J. Elmsheuser27, M. Elsing32, D. Emeliyanov133, Y. Enari157, O.C. Endner86, J.S. Ennis173, J. Erdmann46, A. Ereditato18, G. Ernis178, M. Ernst27, S. Errede169, E. Ertel86, M. Escalier119, C. Escobar127, B. Esposito50, O. Estrada Pastor170, A.I. Etienvre138, E. Etzion155, H. Evans64, A. Ezhilov125, M. Ezzi137e, F. Fabbri22a;22b, L. Fabbri22a;22b, G. Facini33, R.M. Fakhrutdinov132, S. Falciano134a, R.J. Falla81, J. Faltova32, Y. Fang35a, M. Fanti94a;94b, A. Farbin8, A. Farilla136a, C. Farina127, E.M. Farina123a;123b, T. Farooque93, S. Farrell16, S.M. Farrington173, P. Farthouat32, F. Fassi137e, P. Fassnacht32, D. Fassouliotis9, M. Faucci Giannelli80, A. Favareto53a;53b, W.J. Fawcett122, L. Fayard119, O.L. Fedin125;q, W. Fedorko171, S. Feigl121, L. Feligioni88, C. Feng36b, E.J. Feng32, H. Feng92, M.J. Fenton56, A.B. Fenyuk132, L. Feremenga8, P. Fernandez Martinez170, S. Fernandez Perez13, J. Ferrando45, A. Ferrari168, P. Ferrari109, R. Ferrari123a, D.E. Ferreira de Lima60b, A. Ferrer170, D. Ferrere52, C. Ferretti92, F. Fiedler86, A. Filipcic78, M. Filipuzzi45, F. Filthaut108, M. Fincke-Keeler172, K.D. Finelli152, M.C.N. Fiolhais128a;128c;r, L. Fiorini170, A. Fischer2, C. Fischer13, J. Fischer178, W.C. Fisher93, N. Flaschel45, I. Fleck143, P. Fleischmann92, R.R.M. Fletcher124, T. Flick178, HJEP1(207)9 F.A. Forster13, A. Forti87, A.G. Foster19, D. Fournier119, H. Fox75, S. Fracchia141, P. Francavilla83, M. Franchini22a;22b, S. Franchino60a, D. Francis32, L. Franconi121, M. Franklin59, M. Frate166, M. Fraternali123a;123b, D. Freeborn81, S.M. Fressard-Batraneanu32, B. Freund97, D. Froidevaux32, J.A. Frost122, C. Fukunaga158, T. Fusayasu104, J. Fuster170, C. Gabaldon58, O. Gabizon154, A. Gabrielli22a;22b, A. Gabrielli16, G.P. Gach41a, S. Gadatsch32, S. Gadomski80, G. Gagliardi53a;53b, L.G. Gagnon97, C. Galea108, B. Galhardo128a;128c, E.J. Gallas122, B.J. Gallop133, P. Gallus130, G. Galster39, K.K. Gan113, S. Ganguly37, J. Gao36a, Y. Gao77, Y.S. Gao145;g, F.M. Garay Walls49, C. Garc a170, J.E. Garc a Navarro170, M. Garcia-Sciveres16, R.W. Gardner33, N. Garelli145, V. Garonne121, A. Gascon Bravo45, K. Gasnikova45, C. Gatti50, A. Gaudiello53a;53b, G. Gaudio123a, I.L. Gavrilenko98, C. Gay171, G. Gaycken23, E.N. Gazis10, C.N.P. Gee133, J. Geisen57, M. Geisen86, M.P. Geisler60a, K. Gellerstedt148a;148b, C. Gemme53a, M.H. Genest58, C. Geng92, S. Gentile134a;134b, C. Gentsos156, S. George80, D. Gerbaudo13, A. Gershon155, S. Ghasemi143, M. Ghneimat23, B. Giacobbe22a, S. Giagu134a;134b, P. Giannetti126a;126b, S.M. Gibson80, M. Gignac171, M. Gilchriese16, D. Gillberg31, G. Gilles178, D.M. Gingrich3;d, N. Giokaris9; , M.P. Giordani167a;167c, F.M. Giorgi22a, P.F. Giraud138, P. Giromini59, D. Giugni94a, F. Giuli122, C. Giuliani103, M. Giulini60b, B.K. Gjelsten121, S. Gkaitatzis156, I. Gkialas9;s, E.L. Gkougkousis139, L.K. Gladilin101, C. Glasman85, J. Glatzer13, P.C.F. Glaysher45, A. Glazov45, M. Goblirsch-Kolb25, J. Godlewski42, S. Goldfarb91, T. Golling52, D. Golubkov132, A. Gomes128a;128b;128d, R. Goncalo128a, R. Goncalves Gama26a, J. Goncalves Pinto Firmino Da Costa138, G. Gonella51, L. Gonella19, A. Gongadze68, S. Gonzalez de la Hoz170, S. Gonzalez-Sevilla52, L. Goossens32, P.A. Gorbounov99, H.A. Gordon27, I. Gorelov107, B. Gorini32, E. Gorini76a;76b, A. Gorisek78, A.T. Goshaw48, C. Gossling46, M.I. Gostkin68, C.R. Goudet119, D. Goujdami137c, A.G. Goussiou140, N. Govender147b;t, E. Gozani154, L. Graber57, I. Grabowska-Bold41a, P.O.J. Gradin168, J. Gramling166, E. Gramstad121, S. Grancagnolo17, V. Gratchev125, P.M. Gravila28f, C. Gray56, H.M. Gray32, Z.D. Greenwood82;u, C. Grefe23, K. Gregersen81, I.M. Gregor45, P. Grenier145, K. Grevtsov5, J. Gri ths8, A.A. Grillo139, K. Grimm75, S. Grinstein13;v, Ph. Gris37, J.-F. Grivaz119, S. Groh86, E. Gross175, J. Grosse-Knetter57, G.C. Grossi82, Z.J. Grout81, A. Grummer107, L. Guan92, W. Guan176, J. Guenther65, F. Guescini163a, D. Guest166, O. Gueta155, B. Gui113, E. Guido53a;53b, T. Guillemin5, S. Guindon2, U. Gul56, C. Gumpert32, J. Guo36c, W. Guo92, Y. Guo36a, R. Gupta43, S. Gupta122, G. Gustavino134a;134b, P. Gutierrez115, N.G. Gutierrez Ortiz81, C. Gutschow81, C. Guyot138, M.P. Guzik41a, C. Gwenlan122, C.B. Gwilliam77, A. Haas112, C. Haber16, H.K. Hadavand8, N. Haddad137e, A. Hadef88, S. Hagebock23, M. Hagihara164, H. Hakobyan180; , M. Haleem45, J. Haley116, G. Halladjian93, G.D. Hallewell88, K. Hamacher178, P. Hamal117, K. Hamano172, A. Hamilton147a, G.N. Hamity141, P.G. Hamnett45, L. Han36a, S. Han35a, K. Hanagaki69;w, K. Hanawa157, M. Hance139, B. Haney124, P. Hanke60a, J.B. Hansen39, J.D. Hansen39, M.C. Hansen23, P.H. Hansen39, K. Hara164, A.S. Hard176, T. Harenberg178, F. Hariri119, S. Harkusha95, R.D. Harrington49, P.F. Harrison173, N.M. Hartmann102, M. Hasegawa70, Y. Hasegawa142, A. Hasib49, S. Hassani138, S. Haug18, R. Hauser93, L. Hauswald47, L.B. Havener38, M. Havranek130, C.M. Hawkes19, R.J. Hawkings32, D. Hayakawa159, D. Hayden93, C.P. Hays122, J.M. Hays79, H.S. Hayward77, S.J. Haywood133, S.J. Head19, T. Heck86, V. Hedberg84, L. Heelan8, K.K. Heidegger51, S. Heim45, T. Heim16, B. Heinemann45;x, J.J. Heinrich102, L. Heinrich112, C. Heinz55, J. Hejbal129, L. Helary32, A. Held171, S. Hellman148a;148b, C. Helsens32, R.C.W. Henderson75, Y. Heng176, S. Henkelmann171, A.M. Henriques Correia32, S. Henrot-Versille119, G.H. Herbert17, H. Herde25, V. Herget177, Y. Hernandez Jimenez147c, G. Herten51, R. Hertenberger102, L. Hervas32, T.C. Herwig124, G.G. Hesketh81, N.P. Hessey163a, J.W. Hetherly43, S. Higashino69, HJEP1(207)9 M. Hirose51, D. Hirschbuehl178, B. Hiti78, O. Hladik129, X. Hoad49, J. Hobbs150, N. Hod163a, M.C. Hodgkinson141, P. Hodgson141, A. Hoecker32, M.R. Hoeferkamp107, F. Hoenig102, D. Hohn23, T.R. Holmes33, M. Homann46, S. Honda164, T. Honda69, T.M. Hong127, B.H. Hooberman169, W.H. Hopkins118, Y. Horii105, A.J. Horton144, J-Y. Hostachy58, S. Hou153, A. Hoummada137a, J. Howarth45, J. Hoya74, M. Hrabovsky117, I. Hristova17, J. Hrivnac119, T. Hryn'ova5, A. Hrynevich96, P.J. Hsu63, S.-C. Hsu140, Q. Hu36a, S. Hu36c, Y. Huang35a, Z. Hubacek130, F. Hubaut88, F. Huegging23, T.B. Hu man122, E.W. Hughes38, G. Hughes75, M. Huhtinen32, P. Huo150, N. Huseynov68;b, J. Huston93, J. Huth59, G. Iacobucci52, G. Iakovidis27, I. Ibragimov143, L. Iconomidou-Fayard119, Z. Idrissi137e, P. Iengo32, O. Igonkina109;y, T. Iizawa174, Y. Ikegami69, M. Ikeno69, Y. Ilchenko11;z, D. Iliadis156, N. Ilic145, G. Introzzi123a;123b, P. Ioannou9; , M. Iodice136a, K. Iordanidou38, V. Ippolito59, M.F. Isacson168, N. Ishijima120, M. Ishino157, M. Ishitsuka159, C. Issever122, S. Istin20a, F. Ito164, J.M. Iturbe Ponce87, R. Iuppa162a;162b, H. Iwasaki69, J.M. Izen44, V. Izzo106a, S. Jabbar3, P. Jackson1, R.M. Jacobs23, V. Jain2, K.B. Jakobi86, K. Jakobs51, S. Jakobsen65, T. Jakoubek129, D.O. Jamin116, D.K. Jana82, R. Jansky65, J. Janssen23, M. Janus57, P.A. Janus41a, G. Jarlskog84, N. Javadov68;b, T. Javurek51, M. Javurkova51, F. Jeanneau138, L. Jeanty16, J. Jejelava54a;aa, A. Jelinskas173, P. Jenni51;ab, C. Jeske173, S. Jezequel5, H. Ji176, J. Jia150, H. Jiang67, Y. Jiang36a, Z. Jiang145, S. Jiggins81, J. Jimenez Pena170, S. Jin35a, A. Jinaru28b, O. Jinnouchi159, H. Jivan147c, P. Johansson141, K.A. Johns7, C.A. Johnson64, W.J. Johnson140, K. Jon-And148a;148b, R.W.L. Jones75, S.D. Jones151, S. Jones7, T.J. Jones77, J. Jongmanns60a, P.M. Jorge128a;128b, J. Jovicevic163a, X. Ju176, A. Juste Rozas13;v, M.K. Kohler175, A. Kaczmarska42, M. Kado119, H. Kagan113, M. Kagan145, S.J. Kahn88, T. Kaji174, E. Kajomovitz48, C.W. Kalderon84, A. Kaluza86, S. Kama43, A. Kamenshchikov132, N. Kanaya157, L. Kanjir78, V.A. Kantserov100, J. Kanzaki69, B. Kaplan112, L.S. Kaplan176, D. Kar147c, K. Karakostas10, N. Karastathis10, M.J. Kareem57, E. Karentzos10, S.N. Karpov68, Z.M. Karpova68, K. Karthik112, V. Kartvelishvili75, A.N. Karyukhin132, K. Kasahara164, L. Kashif176, R.D. Kass113, A. Kastanas149, Y. Kataoka157, C. Kato157, A. Katre52, J. Katzy45, K. Kawade105, K. Kawagoe73, T. Kawamoto157, G. Kawamura57, E.F. Kay77, V.F. Kazanin111;c, R. Keeler172, R. Kehoe43, J.S. Keller45, J.J. Kempster80, H. Keoshkerian161, O. Kepka129, B.P. Kersevan78, S. Kersten178, R.A. Keyes90, M. Khader169, F. Khalil-zada12, A. Khanov116, A.G. Kharlamov111;c, T. Kharlamova111;c, A. Khodinov160, T.J. Khoo52, V. Khovanskiy99; , E. Khramov68, J. Khubua54b;ac, S. Kido70, C.R. Kilby80, H.Y. Kim8, S.H. Kim164, Y.K. Kim33, N. Kimura156, O.M. Kind17, B.T. King77, D. Kirchmeier47, J. Kirk133, A.E. Kiryunin103, T. Kishimoto157, D. Kisielewska41a, K. Kiuchi164, O. Kivernyk5, E. Kladiva146b, T. Klapdor-Kleingrothaus51, M.H. Klein38, M. Klein77, U. Klein77, K. Kleinknecht86, P. Klimek110, A. Klimentov27, R. Klingenberg46, T. Klingl23, T. Klioutchnikova32, E.-E. Kluge60a, P. Kluit109, S. Kluth103, J. Knapik42, E. Kneringer65, E.B.F.G. Knoops88, A. Knue103, A. Kobayashi157, D. Kobayashi159, T. Kobayashi157, M. Kobel47, M. Kocian145, P. Kodys131, T. Ko as31, E. Ko eman109, N.M. Kohler103, T. Koi145, M. Kolb60b, I. Koletsou5, A.A. Komar98; , Y. Komori157, T. Kondo69, N. Kondrashova36c, K. Koneke51, A.C. Konig108, T. Kono69;ad, R. Konoplich112;ae, N. Konstantinidis81, R. Kopeliansky64, S. Koperny41a, A.K. Kopp51, K. Korcyl42, K. Kordas156, A. Korn81, A.A. Korol111;c, I. Korolkov13, E.V. Korolkova141, O. Kortner103, S. Kortner103, T. Kosek131, V.V. Kostyukhin23, A. Kotwal48, A. Koulouris10, A. Kourkoumeli-Charalampidi123a;123b, C. Kourkoumelis9, E. Kourlitis141, V. Kouskoura27, A.B. Kowalewska42, R. Kowalewski172, T.Z. Kowalski41a, C. Kozakai157, W. Kozanecki138, A.S. Kozhin132, V.A. Kramarenko101, G. Kramberger78, D. Krasnopevtsev100, M.W. Krasny83, A. Krasznahorkay32, D. Krauss103, J.A. Kremer41a, J. Kretzschmar77, K. Kreutzfeldt55, HJEP1(207)9 J. Krstic14, U. Kruchonak68, H. Kruger23, N. Krumnack67, M.C. Kruse48, T. Kubota91, H. Kucuk81, S. Kuday4b, J.T. Kuechler178, S. Kuehn32, A. Kugel60c, F. Kuger177, T. Kuhl45, V. Kukhtin68, R. Kukla88, Y. Kulchitsky95, S. Kuleshov34b, Y.P. Kulinich169, M. Kuna134a;134b, T. Kunigo71, A. Kupco129, O. Kuprash155, H. Kurashige70, L.L. Kurchaninov163a, Y.A. Kurochkin95, M.G. Kurth35a, V. Kus129, E.S. Kuwertz172, M. Kuze159, J. Kvita117, T. Kwan172, D. Kyriazopoulos141, A. La Rosa103, J.L. La Rosa Navarro26d, L. La Rotonda40a;40b, C. Lacasta170, F. Lacava134a;134b, J. Lacey45, H. Lacker17, D. Lacour83, E. Ladygin68, R. Lafaye5, B. Laforge83, T. Lagouri179, S. Lai57, S. Lammers64, W. Lampl7, E. Lancon27, U. Landgraf51, M.P.J. Landon79, M.C. Lanfermann52, V.S. Lang60a, J.C. Lange13, A.J. Lankford166, F. Lanni27, K. Lantzsch23, A. Lanza123a, A. Lapertosa53a;53b, S. Laplace83, J.F. Laporte138, T. Lari94a, F. Lasagni Manghi22a;22b, M. Lassnig32, P. Laurelli50, W. Lavrijsen16, A.T. Law139, P. Laycock77, T. Lazovich59, M. Lazzaroni94a;94b, B. Le91, O. Le Dortz83, E. Le Guirriec88, E.P. Le Quilleuc138, M. LeBlanc172, T. LeCompte6, F. Ledroit-Guillon58, C.A. Lee27, G.R. Lee133;af, S.C. Lee153, L. Lee59, B. Lefebvre90, G. Lefebvre83, M. Lefebvre172, F. Legger102, C. Leggett16, A. Lehan77, G. Lehmann Miotto32, X. Lei7, W.A. Leight45, M.A.L. Leite26d, R. Leitner131, D. Lellouch175, B. Lemmer57, K.J.C. Leney81, T. Lenz23, B. Lenzi32, R. Leone7, S. Leone126a;126b, C. Leonidopoulos49, G. Lerner151, C. Leroy97, A.A.J. Lesage138, C.G. Lester30, M. Levchenko125, J. Lev^eque5, D. Levin92, L.J. Levinson175, M. Levy19, D. Lewis79, B. Li36a;ag, C.-Q. Li36a, H. Li150, L. Li36c, Q. Li35a, S. Li48, X. Li36c, Y. Li143, Z. Liang35a, B. Liberti135a, A. Liblong161, K. Lie62c, J. Liebal23, W. Liebig15, A. Limosani152, S.C. Lin153;ah, T.H. Lin86, B.E. Lindquist150, A.E. Lionti52, E. Lipeles124, A. Lipniacka15, M. Lisovyi60b, T.M. Liss169;ai, A. Lister171, A.M. Litke139, B. Liu153;aj, H. Liu92, H. Liu27, J.K.K. Liu122, J. Liu36b, J.B. Liu36a, K. Liu88, L. Liu169, M. Liu36a, Y.L. Liu36a, Y. Liu36a, M. Livan123a;123b, A. Lleres58, J. Llorente Merino35a, S.L. Lloyd79, C.Y. Lo62b, F. Lo Sterzo153, E.M. Lobodzinska45, P. Loch7, F.K. Loebinger87, K.M. Loew25, A. Loginov179; , T. Lohse17, K. Lohwasser45, M. Lokajicek129, B.A. Long24, J.D. Long169, R.E. Long75, L. Longo76a;76b, K.A. Looper113, J.A. Lopez34b, D. Lopez Mateos59, I. Lopez Paz13, A. Lopez Solis83, J. Lorenz102, N. Lorenzo Martinez5, M. Losada21, P.J. Losel102, X. Lou35a, A. Lounis119, J. Love6, P.A. Love75, H. Lu62a, N. Lu92, Y.J. Lu63, H.J. Lubatti140, C. Luci134a;134b, A. Lucotte58, C. Luedtke51, F. Luehring64, W. Lukas65, L. Luminari134a, O. Lundberg148a;148b, B. Lund-Jensen149, P.M. Luzi83, D. Lynn27, R. Lysak129, E. Lytken84, V. Lyubushkin68, H. Ma27, L.L. Ma36b, Y. Ma36b, G. Maccarrone50, A. Macchiolo103, C.M. Macdonald141, B. Macek78, J. Machado Miguens124;128b, D. Mada ari88, R. Madar37, H.J. Maddocks168, W.F. Mader47, A. Madsen45, J. Maeda70, S. Maeland15, T. Maeno27, A.S. Maevskiy101, E. Magradze57, J. Mahlstedt109, C. Maiani119, C. Maidantchik26a, A.A. Maier103, T. Maier102, A. Maio128a;128b;128d, S. Majewski118, Y. Makida69, N. Makovec119, B. Malaescu83, Pa. Malecki42, V.P. Maleev125, F. Malek58, U. Mallik66, D. Malon6, C. Malone30, S. Maltezos10, S. Malyukov32, J. Mamuzic170, G. Mancini50, L. Mandelli94a, I. Mandic78, J. Maneira128a;128b, L. Manhaes de Andrade Filho26b, J. Manjarres Ramos47, A. Mann102, A. Manousos32, B. Mansoulie138, J.D. Mansour35a, R. Mantifel90, M. Mantoani57, S. Manzoni94a;94b, L. Mapelli32, G. Marceca29, L. March52, L. Marchese122, G. Marchiori83, M. Marcisovsky129, M. Marjanovic37, D.E. Marley92, F. Marroquim26a, S.P. Marsden87, Z. Marshall16, M.U.F Martensson168, S. Marti-Garcia170, C.B. Martin113, T.A. Martin173, V.J. Martin49, B. Martin dit Latour15, M. Martinez13;v, V.I. Martinez Outschoorn169, S. Martin-Haugh133, V.S. Martoiu28b, A.C. Martyniuk81, A. Marzin32, L. Masetti86, T. Mashimo157, R. Mashinistov98, J. Masik87, A.L. Maslennikov111;c, L. Massa135a;135b, P. Mastrandrea5, A. Mastroberardino40a;40b, T. Masubuchi157, P. Mattig178, J. Maurer28b, S.J. Max eld77, D.A. Maximov111;c, R. Mazini153, I. Maznas156, S.M. Mazza94a;94b, HJEP1(207)9 T.G. McCarthy103, L.I. McClymont81, E.F. McDonald91, J.A. Mcfayden81, G. Mchedlidze57, S.J. McMahon133, P.C. McNamara91, R.A. McPherson172;o, S. Meehan140, T.J. Megy51, S. Mehlhase102, A. Mehta77, T. Meideck58, K. Meier60a, B. Meirose44, D. Melini170;ak, B.R. Mellado Garcia147c, J.D. Mellenthin57, M. Melo146a, F. Meloni18, S.B. Menary87, L. Meng77, X.T. Meng92, A. Mengarelli22a;22b, S. Menke103, E. Meoni40a;40b, S. Mergelmeyer17, P. Mermod52, L. Merola106a;106b, C. Meroni94a, F.S. Merritt33, A. Messina134a;134b, J. Metcalfe6, A.S. Mete166, C. Meyer124, J-P. Meyer138, J. Meyer109, H. Meyer Zu Theenhausen60a, F. Miano151, R.P. Middleton133, S. Miglioranzi53a;53b, L. Mijovic49, G. Mikenberg175, M. Mikestikova129, M. Mikuz78, M. Milesi91, A. Milic27, D.W. Miller33, C. Mills49, A. Milov175, D.A. Milstead148a;148b, A.A. Minaenko132, Y. Minami157, I.A. Minashvili68, A.I. Mincer112, B. Mindur41a, M. Mineev68, Y. Minegishi157, Y. Ming176, L.M. Mir13, K.P. Mistry124, T. Mitani174, J. Mitrevski102, V.A. Mitsou170, A. Miucci18, P.S. Miyagawa141, A. Mizukami69, J.U. Mjornmark84, T. Mkrtchyan180, M. Mlynarikova131, T. Moa148a;148b, K. Mochizuki97, P. Mogg51, S. Mohapatra38, S. Molander148a;148b, R. Moles-Valls23, R. Monden71, M.C. Mondragon93, K. Monig45, J. Monk39, E. Monnier88, A. Montalbano150, J. Montejo Berlingen32, F. Monticelli74, S. Monzani94a;94b, R.W. Moore3, N. Morange119, D. Moreno21, M. Moreno Llacer57, P. Morettini53a, S. Morgenstern32, D. Mori144, T. Mori157, M. Morii59, M. Morinaga157, V. Morisbak121, A.K. Morley152, G. Mornacchi32, J.D. Morris79, L. Morvaj150, P. Moschovakos10, M. Mosidze54b, H.J. Moss141, J. Moss145;al, K. Motohashi159, R. Mount145, E. Mountricha27, E.J.W. Moyse89, S. Muanza88, R.D. Mudd19, F. Mueller103, J. Mueller127, R.S.P. Mueller102, D. Muenstermann75, P. Mullen56, G.A. Mullier18, F.J. Munoz Sanchez87, W.J. Murray173;133, H. Musheghyan32, M. Muskinja78, A.G. Myagkov132;am, M. Myska130, B.P. Nachman16, O. Nackenhorst52, K. Nagai122, R. Nagai69;ad, K. Nagano69, Y. Nagasaka61, K. Nagata164, M. Nagel51, E. Nagy88, A.M. Nairz32, Y. Nakahama105, K. Nakamura69, T. Nakamura157, I. Nakano114, R.F. Naranjo Garcia45, R. Narayan11, D.I. Narrias Villar60a, I. Naryshkin125, T. Naumann45, G. Navarro21, R. Nayyar7, H.A. Neal92, P.Yu. Nechaeva98, T.J. Neep138, A. Negri123a;123b, M. Negrini22a, S. Nektarijevic108, C. Nellist119, A. Nelson166, M.E. Nelson122, S. Nemecek129, P. Nemethy112, M. Nessi32;an, M.S. Neubauer169, M. Neumann178, P.R. Newman19, T.Y. Ng62c, T. Nguyen Manh97, R.B. Nickerson122, R. Nicolaidou138, J. Nielsen139, V. Nikolaenko132;am, I. Nikolic-Audit83, K. Nikolopoulos19, J.K. Nilsen121, P. Nilsson27, Y. Ninomiya157, A. Nisati134a, N. Nishu35c, R. Nisius103, T. Nobe157, Y. Noguchi71, M. Nomachi120, I. Nomidis31, M.A. Nomura27, T. Nooney79, M. Nordberg32, N. Norjoharuddeen122, O. Novgorodova47, S. Nowak103, M. Nozaki69, L. Nozka117, K. Ntekas166, E. Nurse81, F. Nuti91, K. O'connor25, D.C. O'Neil144, A.A. O'Rourke45, V. O'Shea56, F.G. Oakham31;d, H. Oberlack103, T. Obermann23, J. Ocariz83, A. Ochi70, I. Ochoa38, J.P. Ochoa-Ricoux34a, S. Oda73, S. Odaka69, H. Ogren64, A. Oh87, S.H. Oh48, C.C. Ohm16, H. Ohman168, H. Oide53a;53b, H. Okawa164, Y. Okumura157, T. Okuyama69, A. Olariu28b, L.F. Oleiro Seabra128a, S.A. Olivares Pino49, D. Oliveira Damazio27, A. Olszewski42, J. Olszowska42, A. Onofre128a;128e, K. Onogi105, P.U.E. Onyisi11;z, M.J. Oreglia33, Y. Oren155, D. Orestano136a;136b, N. Orlando62b, R.S. Orr161, B. Osculati53a;53b; , R. Ospanov36a, G. Otero y Garzon29, H. Otono73, M. Ouchrif137d, F. Ould-Saada121, A. Ouraou138, K.P. Oussoren109, Q. Ouyang35a, M. Owen56, R.E. Owen19, V.E. Ozcan20a, N. Ozturk8, K. Pachal144, A. Pacheco Pages13, L. Pacheco Rodriguez138, C. Padilla Aranda13, S. Pagan Griso16, M. Paganini179, F. Paige27, G. Palacino64, S. Palazzo40a;40b, S. Palestini32, M. Palka41b, D. Pallin37, E.St. Panagiotopoulou10, I. Panagoulias10, C.E. Pandini83, J.G. Panduro Vazquez80, P. Pani32, S. Panitkin27, D. Pantea28b, L. Paolozzi52, Th.D. Papadopoulou10, K. Papageorgiou9;s, A. Paramonov6, D. Paredes Hernandez179, HJEP1(207)9 V.R. Pascuzzi161, J.M. Pasner139, E. Pasqualucci134a, S. Passaggio53a, Fr. Pastore80, S. Pataraia178, J.R. Pater87, T. Pauly32, B. Pearson103, S. Pedraza Lopez170, R. Pedro128a;128b, S.V. Peleganchuk111;c, O. Penc129, C. Peng35a, H. Peng36a, J. Penwell64, B.S. Peralva26b, M.M. Perego138, D.V. Perepelitsa27, L. Perini94a;94b, H. Pernegger32, S. Perrella106a;106b, R. Peschke45, V.D. Peshekhonov68; , K. Peters45, R.F.Y. Peters87, B.A. Petersen32, T.C. Petersen39, E. Petit58, A. Petridis1, C. Petridou156, P. Petro 119, E. Petrolo134a, M. Petrov122, F. Petrucci136a;136b, N.E. Pettersson89, A. Peyaud138, R. Pezoa34b, F.H. Phillips93, P.W. Phillips133, G. Piacquadio150, E. Pianori173, A. Picazio89, E. Piccaro79, M.A. Pickering122, R. Piegaia29, J.E. Pilcher33, A.D. Pilkington87, A.W.J. Pin87, M. Pinamonti135a;135b, J.L. Pinfold3, H. Pirumov45, M. Pitt175, L. Plazak146a, M.-A. Pleier27, V. Pleskot86, E. Plotnikova68, D. Pluth67, P. Podberezko111, R. Poettgen148a;148b, R. Poggi123a;123b, L. Poggioli119, D. Pohl23, G. Polesello123a, A. Poley45, A. Policicchio40a;40b, R. Polifka32, A. Polini22a, C.S. Pollard56, V. Polychronakos27, K. Pommes32, D. Ponomarenko100, L. Pontecorvo134a, B.G. Pope93, G.A. Popeneciu28d, A. Poppleton32, S. Pospisil130, K. Potamianos16, I.N. Potrap68, C.J. Potter30, G. Poulard32, T. Poulsen84, J. Poveda32, M.E. Pozo Astigarraga32, P. Pralavorio88, A. Pranko16, S. Prell67, D. Price87, L.E. Price6, M. Primavera76a, S. Prince90, N. Proklova100, K. Proko ev62c, F. Prokoshin34b, S. Protopopescu27, J. Proudfoot6, M. Przybycien41a, A. Puri169, P. Puzo119, J. Qian92, G. Qin56, Y. Qin87, A. Quadt57, M. Queitsch-Maitland45, D. Quilty56, S. Raddum121, V. Radeka27, V. Radescu122, S.K. Radhakrishnan150, P. Radlo 118, P. Rados91, F. Ragusa94a;94b, G. Rahal181, J.A. Raine87, S. Rajagopalan27, C. Rangel-Smith168, T. Rashid119, M.G. Ratti94a;94b, D.M. Rauch45, F. Rauscher102, S. Rave86, I. Ravinovich175, J.H. Rawling87, M. Raymond32, A.L. Read121, N.P. Readio 58, M. Reale76a;76b, D.M. Rebuzzi123a;123b, A. Redelbach177, G. Redlinger27, R. Reece139, R.G. Reed147c, K. Reeves44, L. Rehnisch17, J. Reichert124, A. Reiss86, C. Rembser32, H. Ren35a, M. Rescigno134a, S. Resconi94a, E.D. Resseguie124, S. Rettie171, E. Reynolds19, O.L. Rezanova111;c, P. Reznicek131, R. Rezvani97, R. Richter103, S. Richter81, E. Richter-Was41b, O. Ricken23, M. Ridel83, P. Rieck103, C.J. Riegel178, J. Rieger57, O. Rifki115, M. Rijssenbeek150, A. Rimoldi123a;123b, M. Rimoldi18, L. Rinaldi22a, B. Ristic52, E. Ritsch32, I. Riu13, F. Rizatdinova116, E. Rizvi79, C. Rizzi13, R.T. Roberts87, S.H. Robertson90;o, A. Robichaud-Veronneau90, D. Robinson30, J.E.M. Robinson45, A. Robson56, E. Rocco86, C. Roda126a;126b, Y. Rodina88;ao, S. Rodriguez Bosca170, A. Rodriguez Perez13, D. Rodriguez Rodriguez170, S. Roe32, C.S. Rogan59, O. R hne121, J. Rolo 59, A. Romaniouk100, M. Romano22a;22b, S.M. Romano Saez37, E. Romero Adam170, N. Rompotis77, M. Ronzani51, L. Roos83, S. Rosati134a, K. Rosbach51, P. Rose139, N.-A. Rosien57, E. Rossi106a;106b, L.P. Rossi53a, J.H.N. Rosten30, R. Rosten140, M. Rotaru28b, I. Roth175, J. Rothberg140, D. Rousseau119, A. Rozanov88, Y. Rozen154, X. Ruan147c, F. Rubbo145, F. Ruhr51, A. Ruiz-Martinez31, Z. Rurikova51, N.A. Rusakovich68, H.L. Russell90, J.P. Rutherfoord7, N. Ruthmann32, Y.F. Ryabov125, M. Rybar169, G. Rybkin119, S. Ryu6, A. Ryzhov132, G.F. Rzehorz57, A.F. Saavedra152, G. Sabato109, S. Sacerdoti29, H.F-W. Sadrozinski139, R. Sadykov68, F. Safai Tehrani134a, P. Saha110, M. Sahinsoy60a, M. Saimpert45, M. Saito157, T. Saito157, H. Sakamoto157, Y. Sakurai174, G. Salamanna136a;136b, J.E. Salazar Loyola34b, D. Salek109, P.H. Sales De Bruin168, D. Salihagic103, A. Salnikov145, J. Salt170, D. Salvatore40a;40b, F. Salvatore151, A. Salvucci62a;62b;62c, A. Salzburger32, D. Sammel51, D. Sampsonidis156, D. Sampsonidou156, J. Sanchez170, V. Sanchez Martinez170, A. Sanchez Pineda167a;167c, H. Sandaker121, R.L. Sandbach79, C.O. Sander45, M. Sandho 178, C. Sandoval21, D.P.C. Sankey133, M. Sannino53a;53b, A. Sansoni50, C. Santoni37, R. Santonico135a;135b, H. Santos128a, I. Santoyo Castillo151, A. Sapronov68, J.G. Saraiva128a;128d, HJEP1(207)9 C. Sawyer133, L. Sawyer82;u, J. Saxon33, C. Sbarra22a, A. Sbrizzi22a;22b, T. Scanlon81, D.A. Scannicchio166, M. Scarcella152, V. Scarfone40a;40b, J. Schaarschmidt140, P. Schacht103, B.M. Schachtner102, D. Schaefer32, L. Schaefer124, R. Schaefer45, J. Schae er86, S. Schaepe23, S. Schaetzel60b, U. Schafer86, A.C. Scha er119, D. Schaile102, R.D. Schamberger150, V. Scharf60a, V.A. Schegelsky125, D. Scheirich131, M. Schernau166, C. Schiavi53a;53b, S. Schier139, L.K. Schildgen23, C. Schillo51, M. Schioppa40a;40b, S. Schlenker32, K.R. Schmidt-Sommerfeld103, K. Schmieden32, C. Schmitt86, S. Schmitt45, S. Schmitz86, U. Schnoor51, L. Schoe el138, A. Schoening60b, B.D. Schoenrock93, E. Schopf23, M. Schott86, J.F.P. Schouwenberg108, J. Schovancova32, S. Schramm52, N. Schuh86, A. Schulte86, M.J. Schultens23, H.-C. Schultz-Coulon60a, H. Schulz17, M. Schumacher51, B.A. Schumm139, Ph. Schune138, A. Schwartzman145, T.A. Schwarz92, H. Schweiger87, Ph. Schwemling138, R. Schwienhorst93, J. Schwindling138, A. Sciandra23, G. Sciolla25, F. Scuri126a;126b, F. Scutti91, J. Searcy92, P. Seema23, S.C. Seidel107, A. Seiden139, J.M. Seixas26a, G. Sekhniaidze106a, K. Sekhon92, S.J. Sekula43, N. Semprini-Cesari22a;22b, S. Senkin37, C. Serfon121, L. Serin119, L. Serkin167a;167b, M. Sessa136a;136b, R. Seuster172, H. Severini115, T. S ligoj78, F. Sforza32, A. Sfyrla52, E. Shabalina57, N.W. Shaikh148a;148b, L.Y. Shan35a, R. Shang169, J.T. Shank24, M. Shapiro16, P.B. Shatalov99, K. Shaw167a;167b, S.M. Shaw87, A. Shcherbakova148a;148b, C.Y. Shehu151, Y. Shen115, P. Sherwood81, L. Shi153;ap, S. Shimizu70, C.O. Shimmin179, M. Shimojima104, I.P.J. Shipsey122, S. Shirabe73, M. Shiyakova68;aq, J. Shlomi175, A. Shmeleva98, D. Shoaleh Saadi97, M.J. Shochet33, S. Shojaii94a, D.R. Shope115, S. Shrestha113, E. Shulga100, M.A. Shupe7, P. Sicho129, A.M. Sickles169, P.E. Sidebo149, E. Sideras Haddad147c, O. Sidiropoulou177, A. Sidoti22a;22b, F. Siegert47, Dj. Sijacki14, J. Silva128a;128d, S.B. Silverstein148a, V. Simak130, Lj. Simic14, S. Simion119, E. Simioni86, B. Simmons81, M. Simon86, P. Sinervo161, N.B. Sinev118, M. Sioli22a;22b, G. Siragusa177, I. Siral92, S.Yu. Sivoklokov101, J. Sjolin148a;148b, M.B. Skinner75, P. Skubic115, M. Slater19, T. Slavicek130, M. Slawinska42, K. Sliwa165, R. Slovak131, V. Smakhtin175, B.H. Smart5, J. Smiesko146a, N. Smirnov100, S.Yu. Smirnov100, Y. Smirnov100, L.N. Smirnova101;ar, O. Smirnova84, J.W. Smith57, M.N.K. Smith38, R.W. Smith38, M. Smizanska75, K. Smolek130, A.A. Snesarev98, I.M. Snyder118, S. Snyder27, R. Sobie172;o, F. Socher47, A. So er155, D.A. Soh153, G. Sokhrannyi78, C.A. Solans Sanchez32, M. Solar130, E.Yu. Soldatov100, U. Soldevila170, A.A. Solodkov132, A. Soloshenko68, O.V. Solovyanov132, V. Solovyev125, P. Sommer51, H. Son165, H.Y. Song36a;as, A. Sopczak130, D. Sosa60b, C.L. Sotiropoulou126a;126b, R. Soualah167a;167c, A.M. Soukharev111;c, D. South45, B.C. Sowden80, S. Spagnolo76a;76b, M. Spalla126a;126b, M. Spangenberg173, F. Spano80, D. Sperlich17, F. Spettel103, T.M. Spieker60a, R. Spighi22a, G. Spigo32, L.A. Spiller91, M. Spousta131, R.D. St. Denis56; , A. Stabile94a, R. Stamen60a, S. Stamm17, E. Stanecka42, R.W. Stanek6, C. Stanescu136a, M.M. Stanitzki45, S. Stapnes121, E.A. Starchenko132, G.H. Stark33, J. Stark58, S.H Stark39, P. Staroba129, P. Starovoitov60a, S. Starz32, R. Staszewski42, P. Steinberg27, B. Stelzer144, H.J. Stelzer32, O. Stelzer-Chilton163a, H. Stenzel55, G.A. Stewart56, M.C. Stockton118, M. Stoebe90, G. Stoicea28b, P. Stolte57, S. Stonjek103, A.R. Stradling8, A. Straessner47, M.E. Stramaglia18, J. Strandberg149, S. Strandberg148a;148b, A. Strandlie121, M. Strauss115, P. Strizenec146b, R. Strohmer177, D.M. Strom118, R. Stroynowski43, A. Strubig108, S.A. Stucci27, B. Stugu15, N.A. Styles45, D. Su145, J. Su127, S. Suchek60a, Y. Sugaya120, M. Suk130, V.V. Sulin98, S. Sultansoy4c, T. Sumida71, S. Sun59, X. Sun3, K. Suruliz151, C.J.E. Suster152, M.R. Sutton151, S. Suzuki69, M. Svatos129, M. Swiatlowski33, S.P. Swift2, I. Sykora146a, T. Sykora131, D. Ta51, K. Tackmann45, J. Taenzer155, A. Ta ard166, R. Ta rout163a, N. Taiblum155, H. Takai27, R. Takashima72, T. Takeshita142, Y. Takubo69, M. Talby88, A.A. Talyshev111;c, J. Tanaka157, M. Tanaka159, HJEP1(207)9 S. Tarem154, G.F. Tartarelli94a, P. Tas131, M. Tasevsky129, T. Tashiro71, E. Tassi40a;40b, A. Tavares Delgado128a;128b, Y. Tayalati137e, A.C. Taylor107, G.N. Taylor91, P.T.E. Taylor91, W. Taylor163b, P. Teixeira-Dias80, D. Temple144, H. Ten Kate32, P.K. Teng153, J.J. Teoh120, F. Tepel178, S. Terada69, K. Terashi157, J. Terron85, S. Terzo13, M. Testa50, R.J. Teuscher161;o, T. Theveneaux-Pelzer88, J.P. Thomas19, J. Thomas-Wilsker80, P.D. Thompson19, A.S. Thompson56, L.A. Thomsen179, E. Thomson124, M.J. Tibbetts16, R.E. Ticse Torres88, V.O. Tikhomirov98;at, Yu.A. Tikhonov111;c, S. Timoshenko100, P. Tipton179, S. Tisserant88, K. Todome159, S. Todorova-Nova5, J. Tojo73, S. Tokar146a, K. Tokushuku69, E. Tolley59, L. Tomlinson87, M. Tomoto105, L. Tompkins145;au, K. Toms107, B. Tong59, P. Tornambe51, E. Torrence118, H. Torres144, E. Torro Pastor140, J. Toth88;av, F. Touchard88, D.R. Tovey141, C.J. Treado112, T. Trefzger177, F. Tresoldi151, A. Tricoli27, I.M. Trigger163a, S. Trincaz-Duvoid83, M.F. Tripiana13, W. Trischuk161, B. Trocme58, A. Trofymov45, C. Troncon94a, M. Trottier-McDonald16, M. Trovatelli172, L. Truong167a;167c, M. Trzebinski42, A. Trzupek42, K.W. Tsang62a, J.C-L. Tseng122, P.V. Tsiareshka95, G. Tsipolitis10, N. Tsirintanis9, S. Tsiskaridze13, V. Tsiskaridze51, E.G. Tskhadadze54a, K.M. Tsui62a, I.I. Tsukerman99, V. Tsulaia16, S. Tsuno69, D. Tsybychev150, Y. Tu62b, A. Tudorache28b, V. Tudorache28b, T.T. Tulbure28a, A.N. Tuna59, S.A. Tupputi22a;22b, S. Turchikhin68, D. Turgeman175, I. Turk Cakir4b;aw, R. Turra94a, P.M. Tuts38, G. Ucchielli22a;22b, I. Ueda69, M. Ughetto148a;148b, F. Ukegawa164, G. Unal32, A. Undrus27, G. Unel166, F.C. Ungaro91, Y. Unno69, C. Unverdorben102, J. Urban146b, P. Urquijo91, P. Urrejola86, G. Usai8, J. Usui69, L. Vacavant88, V. Vacek130, B. Vachon90, C. Valderanis102, E. Valdes Santurio148a;148b, S. Valentinetti22a;22b, A. Valero170, L. Valery13, S. Valkar131, A. Vallier5, J.A. Valls Ferrer170, W. Van Den Wollenberg109, H. van der Graaf109, P. van Gemmeren6, J. Van Nieuwkoop144, I. van Vulpen109, M.C. van Woerden109, M. Vanadia135a;135b, W. Vandelli32, A. Vaniachine160, P. Vankov109, G. Vardanyan180, R. Vari134a, E.W. Varnes7, C. Varni53a;53b, T. Varol43, D. Varouchas119, A. Vartapetian8, K.E. Varvell152, J.G. Vasquez179, G.A. Vasquez34b, F. Vazeille37, T. Vazquez Schroeder90, J. Veatch57, V. Veeraraghavan7, L.M. Veloce161, F. Veloso128a;128c, S. Veneziano134a, A. Ventura76a;76b, M. Venturi172, N. Venturi161, A. Venturini25, V. Vercesi123a, M. Verducci136a;136b, W. Verkerke109, J.C. Vermeulen109, M.C. Vetterli144;d, N. Viaux Maira34b, O. Viazlo84, I. Vichou169; , T. Vickey141, O.E. Vickey Boeriu141, G.H.A. Viehhauser122, S. Viel16, L. Vigani122, M. Villa22a;22b, M. Villaplana Perez94a;94b, E. Vilucchi50, M.G. Vincter31, V.B. Vinogradov68, A. Vishwakarma45, C. Vittori22a;22b, I. Vivarelli151, S. Vlachos10, M. Vlasak130, M. Vogel178, P. Vokac130, G. Volpi126a;126b, H. von der Schmitt103, E. von Toerne23, V. Vorobel131, K. Vorobev100, M. Vos170, R. Voss32, J.H. Vossebeld77, N. Vranjes14, M. Vranjes Milosavljevic14, V. Vrba130, M. Vreeswijk109, R. Vuillermet32, I. Vukotic33, P. Wagner23, W. Wagner178, J. Wagner-Kuhr102, H. Wahlberg74, S. Wahrmund47, J. Wakabayashi105, J. Walder75, R. Walker102, W. Walkowiak143, V. Wallangen148a;148b, C. Wang35b, C. Wang36b;ax, F. Wang176, H. Wang16, H. Wang3, J. Wang45, J. Wang152, Q. Wang115, R. Wang6, S.M. Wang153, T. Wang38, W. Wang153;ay, W. Wang36a, Z. Wang36c, C. Wanotayaroj118, A. Warburton90, C.P. Ward30, D.R. Wardrope81, A. Washbrook49, P.M. Watkins19, A.T. Watson19, M.F. Watson19, G. Watts140, S. Watts87, B.M. Waugh81, A.F. Webb11, S. Webb86, M.S. Weber18, S.W. Weber177, S.A. Weber31, J.S. Webster6, A.R. Weidberg122, B. Weinert64, J. Weingarten57, M. Weirich86, C. Weiser51, H. Weits109, P.S. Wells32, T. Wenaus27, T. Wengler32, S. Wenig32, N. Wermes23, M.D. Werner67, P. Werner32, M. Wessels60a, K. Whalen118, N.L. Whallon140, A.M. Wharton75, A.S. White92, A. White8, M.J. White1, R. White34b, D. Whiteson166, F.J. Wickens133, W. Wiedenmann176, M. Wielers133, C. Wiglesworth39, L.A.M. Wiik-Fuchs23, A. Wildauer103, F. Wilk87, HJEP1(207)9 I. Wingerter-Seez5, E. Winkels151, F. Winklmeier118, O.J. Winston151, B.T. Winter23, A. Yamamoto69, S. Yamamoto157, T. Yamanaka157, K. Yamauchi105, Y. Yamazaki70, Z. Yan24, H. Yang36c, H. Yang16, Y. Yang153, Z. Yang15, W-M. Yao16, Y.C. Yap83, Y. Yasu69, E. Yatsenko5, K.H. Yau Wong23, J. Ye43, S. Ye27, I. Yeletskikh68, E. Yigitbasi24, E. Yildirim86, K. Yorita174, K. Yoshihara124, C. Young145, C.J.S. Young32, D.R. Yu16, J. Yu8, J. Yu67, S.P.Y. Yuen23, I. Yusu 30;az , B. Zabinski42, G. Zacharis10, R. Zaidan13, A.M. Zaitsev132;am, N. Zakharchuk45, J. Zalieckas15, A. Zaman150, S. Zambito59, D. Zanzi91, C. Zeitnitz178, A. Zemla41a, J.C. Zeng169, Q. Zeng145, O. Zenin132, T. Zenis146a, D. Zerwas119, D. Zhang92, F. Zhang176, G. Zhang36a;as, H. Zhang35b, J. Zhang6, L. Zhang51, L. Zhang36a, M. Zhang169, P. Zhang35b, R. Zhang23, R. Zhang36a;ax, X. Zhang36b, Y. Zhang35a, Z. Zhang119, X. Zhao43, Y. Zhao36b;ba, Z. Zhao36a, A. Zhemchugov68, B. Zhou92, C. Zhou176, L. Zhou43, M. Zhou35a, M. Zhou150, N. Zhou35c, C.G. Zhu36b, H. Zhu35a, J. Zhu92, Y. Zhu36a, X. Zhuang35a, K. Zhukov98, A. Zibell177, D. Zieminska64, N.I. Zimine68, C. Zimmermann86, S. Zimmermann51, Z. Zinonos103, M. Zinser86, M. Ziolkowski143, L. Zivkovic14, G. Zobernig176, A. Zoccoli22a;22b, R. Zou33, M. zur Nedden17 and L. Zwalinski32 1 Department of Physics, University of Adelaide, Adelaide, Australia 2 Physics Department, SUNY Albany, Albany NY, United States of America 3 Department of Physics, University of Alberta, Edmonton AB, Canada 4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey 5 LAPP, CNRS/IN2P3 and Universite Savoie Mont Blanc, Annecy-le-Vieux, France 6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America 7 Department of Physics, University of Arizona, Tucson AZ, United States of America 8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of Barcelona, Spain 9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece 10 Physics Department, National Technical University of Athens, Zografou, Greece 11 Department of Physics, The University of Texas at Austin, Austin TX, United States of America 12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan 13 Institut de F sica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, 14 Institute of Physics, University of Belgrade, Belgrade, Serbia 15 Department for Physics and Technology, University of Bergen, Bergen, Norway 16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America University of Bern, Bern, Switzerland 17 Department of Physics, Humboldt University, Berlin, Germany 18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, 19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (e) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey 21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia 22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Universita di Bologna, HJEP1(207)9 Paulo, Brazil 23 Physikalisches Institut, University of Bonn, Bonn, Germany 24 Department of Physics, Boston University, Boston MA, United States of America 25 Department of Physics, Brandeis University, Waltham MA, United States of America 26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao 27 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America 28 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania 29 Departamento de F sica, Universidad de Buenos Aires, Buenos Aires, Argentina 30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 31 Department of Physics, Carleton University, Ottawa ON, Canada 32 CERN, Geneva, Switzerland 33 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America 34 (a) Departamento de F sica, Ponti cia Universidad Catolica de Chile, Santiago; (b) Departamento de F sica, Universidad Tecnica Federico Santa Mar a, Valpara so, Chile 35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China 36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics, Shandong University, Shandong; (c) Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai(also at PKU-CHEP), China 37 Universite Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France 38 Nevis Laboratory, Columbia University, Irvington NY, United States of America 39 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark 40 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Universita della Calabria, Rende, Italy 41 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland 42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland 43 Physics Department, Southern Methodist University, Dallas TX, United States of America 44 Physics Department, University of Texas at Dallas, Richardson TX, United States of America 45 DESY, Hamburg and Zeuthen, Germany 46 Lehrstuhl fur Experimentelle Physik IV, Technische Universitat Dortmund, Dortmund, Germany 47 Institut fur Kern- und Teilchenphysik, Technische Universitat Dresden, Dresden, Germany 48 Department of Physics, Duke University, Durham NC, United States of America 49 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom 50 INFN e Laboratori Nazionali di Frascati, Frascati, Italy 51 Fakultat fur Mathematik und Physik, Albert-Ludwigs-Universitat, Freiburg, Germany 52 Departement de Physique Nucleaire et Corpusculaire, Universite de Geneve, Geneva, Switzerland 53 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Universita di Genova, Genova, Italy 54 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia 55 II Physikalisches Institut, Justus-Liebig-Universitat Giessen, Giessen, Germany 56 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom Grenoble, France 58 Laboratoire de Physique Subatomique et de Cosmologie, Universite Grenoble-Alpes, CNRS/IN2P3, 59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States 60 (a) Kirchho -Institut fur Physik, Ruprecht-Karls-Universitat Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universitat Heidelberg, Heidelberg; (c) ZITI Institut fur technische Informatik, Ruprecht-Karls-Universitat Heidelberg, Mannheim, Germany 61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan 62 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water 63 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 64 Department of Physics, Indiana University, Bloomington IN, United States of America 65 Institut fur Astro- und Teilchenphysik, Leopold-Franzens-Universitat, Innsbruck, Austria 66 University of Iowa, Iowa City IA, United States of America 67 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America 68 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia 69 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan 70 Graduate School of Science, Kobe University, Kobe, Japan 71 Faculty of Science, Kyoto University, Kyoto, Japan 72 Kyoto University of Education, Kyoto, Japan 73 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan Italy 74 Instituto de F sica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina 75 Physics Department, Lancaster University, Lancaster, United Kingdom 76 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Universita del Salento, Lecce, 77 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom 78 Department of Experimental Particle Physics, Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia 79 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom 80 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom 81 Department of Physics and Astronomy, University College London, London, United Kingdom 82 Louisiana Tech University, Ruston LA, United States of America 83 Laboratoire de Physique Nucleaire et de Hautes Energies, UPMC and Universite Paris-Diderot and CNRS/IN2P3, Paris, France 84 Fysiska institutionen, Lunds universitet, Lund, Sweden 85 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain 86 Institut fur Physik, Universitat Mainz, Mainz, Germany 87 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom 88 CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France 89 Department of Physics, University of Massachusetts, Amherst MA, United States of America 90 Department of Physics, McGill University, Montreal QC, Canada 91 School of Physics, University of Melbourne, Victoria, Australia 92 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America 93 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America 94 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Universita di Milano, Milano, Italy 95 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of 97 Group of Particle Physics, University of Montreal, Montreal QC, Canada 99 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia 100 National Research Nuclear University MEPhI, Moscow, Russia 101 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, 102 Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Munchen, Germany 103 Max-Planck-Institut fur Physik (Werner-Heisenberg-Institut), Munchen, Germany 104 Nagasaki Institute of Applied Science, Nagasaki, Japan 105 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan 106 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Universita di Napoli, Napoli, Italy 107 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States Nijmegen/Nikhef, Nijmegen, Netherlands 108 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University 109 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, 110 Department of Physics, Northern Illinois University, DeKalb IL, United States of America 111 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia 112 Department of Physics, New York University, New York NY, United States of America 113 Ohio State University, Columbus OH, United States of America 114 Faculty of Science, Okayama University, Okayama, Japan 115 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America 116 Department of Physics, Oklahoma State University, Stillwater OK, United States of America 117 Palacky University, RCPTM, Olomouc, Czech Republic 118 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America 119 LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France 120 Graduate School of Science, Osaka University, Osaka, Japan 121 Department of Physics, University of Oslo, Oslo, Norway 122 Department of Physics, Oxford University, Oxford, United Kingdom 123 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Universita di Pavia, Pavia, Italy 124 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America 125 National Research Centre \Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia 126 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Universita di Pisa, Pisa, Italy 127 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of 128 (a) Laboratorio de Instrumentaca~o e F sica Experimental de Part culas - LIP, Lisboa; (b) Faculdade de Ci^encias, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de F sica Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada; (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal 129 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic 130 Czech Technical University in Prague, Praha, Czech Republic 131 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 132 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia 133 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom 134 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Universita di Roma, Roma, Italy Vergata, Roma, Italy Roma, Italy 136 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Universita Roma Tre, 137 (a) Faculte des Sciences Ain Chock, Reseau Universitaire de Physique des Hautes Energies Universite Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculte des Sciences Semlalia, Universite Cadi Ayyad, LPHEA-Marrakech; (d) Faculte des Sciences, Universite Mohamed Premier and LPTPM, Oujda; (e) Faculte des sciences, Universite Mohammed V, Rabat, Morocco 138 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France 139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, 140 Department of Physics, University of Washington, Seattle WA, United States of America 141 Department of Physics and Astronomy, University of She eld, She eld, United Kingdom 142 Department of Physics, Shinshu University, Nagano, Japan 143 Department Physik, Universitat Siegen, Siegen, Germany 144 Department of Physics, Simon Fraser University, Burnaby BC, Canada 145 SLAC National Accelerator Laboratory, Stanford CA, United States of America 146 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic 147 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa United States of America 148 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden 149 Physics Department, Royal Institute of Technology, Stockholm, Sweden 150 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, Israel of Tokyo, Tokyo, Japan 151 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom 152 School of Physics, University of Sydney, Sydney, Australia 153 Institute of Physics, Academia Sinica, Taipei, Taiwan 154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel 155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece 157 International Center for Elementary Particle Physics and Department of Physics, The University ON, Canada 158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan 159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan 160 Tomsk State University, Tomsk, Russia 161 Department of Physics, University of Toronto, Toronto ON, Canada 162 (a) INFN-TIFPA; (b) University of Trento, Trento, Italy 163 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto 164 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan 165 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America 166 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of 167 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Universita di Udine, Udine, Italy 169 Department of Physics, University of Illinois, Urbana IL, United States of America 171 Department of Physics, University of British Columbia, Vancouver BC, Canada 172 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada 173 Department of Physics, University of Warwick, Coventry, United Kingdom 174 Waseda University, Tokyo, Japan 175 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel 176 Department of Physics, University of Wisconsin, Madison WI, United States of America 177 Fakultat fur Physik und Astronomie, Julius-Maximilians-Universitat, Wurzburg, Germany 178 Fakultat fur Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universitat Wuppertal, Wuppertal, Germany 179 Department of Physics, Yale University, New Haven CT, United States of America 180 Yerevan Physics Institute, Yerevan, Armenia 181 Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France a Also at Department of Physics, King's College London, London, United Kingdom b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan c Also at Novosibirsk State University, Novosibirsk, Russia d Also at TRIUMF, Vancouver BC, Canada e Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America f Also at Physics Department, An-Najah National University, Nablus, Palestine g Also at Department of Physics, California State University, Fresno CA, United States of America h Also at Department of Physics, University of Fribourg, Fribourg, Switzerland i Also at II Physikalisches Institut, Georg-August-Universitat, Gottingen, Germany j Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain k Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal l Also at Tomsk State University, Tomsk, Russia m Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China n Also at Universita di Napoli Parthenope, Napoli, Italy o Also at Institute of Particle Physics (IPP), Canada p Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania q Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, United States of America r Also at Borough of Manhattan Community College, City University of New York, New York City, s Also at Department of Financial and Management Engineering, University of the Aegean, Chios, t Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South u Also at Louisiana Tech University, Ruston LA, United States of America v Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain w Also at Graduate School of Science, Osaka University, Osaka, Japan x Also at Fakultat fur Mathematik und Physik, Albert-Ludwigs-Universitat, Freiburg, Germany y Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University z Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of aa Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia ac Also at Georgian Technical University (GTU),Tbilisi, Georgia af Also at Departamento de F sica, Ponti cia Universidad Catolica de Chile, Santiago, Chile ag Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of ah Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan ai Also at The City College of New York, New York NY, United States of America aj Also at School of Physics, Shandong University, Shandong, China ak Also at Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia an Also at Departement de Physique Nucleaire et Corpusculaire, Universite de Geneve, Geneva, Technology, Barcelona, Spain ao Also at Institut de F sica d'Altes Energies (IFAE), The Barcelona Institute of Science and aq Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of ar Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia at Also at National Research Nuclear University MEPhI, Moscow, Russia au Also at Department of Physics, Stanford University, Stanford CA, United States of America av Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary Also at Giresun University, Faculty of Engineering, Turkey ax Also at CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France ba Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France Deceased [16] ATLAS collaboration, Performance of the ATLAS trigger system in 2015, Eur . Phys. J. C [18] T. Sj ostrand, S. Mrenna and P.Z. Skands , A brief introduction to PYTHIA 8:1 , Comput . Phys. Commun . 178 ( 2008 ) 852 [arXiv: 0710 .3820] [INSPIRE]. [19] ATLAS collaboration, Summary of ATLAS PYTHIA 8 tunes, ATL- PHYS-PUB- 2012- 003 , [21] ATLAS collaboration, The ATLAS simulation infrastructure , Eur. Phys. J. C 70 ( 2010 ) 823 at hadron colliders, Comput. Phys. Commun . 185 ( 2014 ) 2930 [arXiv: 1112 .5675] [INSPIRE]. [34] M. Cacciari , M. Czakon , M. Mangano , A. Mitov and P. Nason , Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation , Phys. Lett . [49] F. Cascioli , P. Maierhofer and S. Pozzorini , Scattering amplitudes with open loops , Phys. Rev . [50] S. Schumann and F. Krauss , A parton shower algorithm based on Catani-Seymour dipole factorisation , JHEP 03 ( 2008 ) 038 [arXiv: 0709 .1027] [INSPIRE]. [51] S. Hoeche , F. Krauss , M. Schonherr and F. Siegert , QCD matrix elements + parton showers: the NLO case , JHEP 04 ( 2013 ) 027 [arXiv: 1207 .5030] [INSPIRE]. [52] ATLAS collaboration, Monte Carlo generators for the production of a W or Z= [61] M. Cacciari , G.P. Salam and G. Soyez, FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) 1896 [69] D. Krohn , J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 ( 2010 ) 084 [arXiv: 0912 .1342] M. Wittgen145 , M. Wobisch82;u, T.M.H. Wolf109 , R. Wol 88, M.W. Wolter42 , H. Wolters128a;128c, V.W.S. Wong171 , S.D. Worm19 , B.K. Wosiek42 , J. Wotschack32 , K.W. Wozniak42 , M. Wu33 , S.L. Wu176 , X. Wu52 , Y. Wu92, T.R. Wyatt87 , B.M. Wynne49 , S. Xella39, Z. Xi92 , L. Xia35c, D. Xu35a , L. Xu27, B. Yabsley152 , S. Yacoob147a, D. Yamaguchi159, Y. Yamaguchi120 ,


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP11%282017%29191.pdf

The ATLAS collaboration, M. Aaboud, G. Aad, B. Abbott, J. Abdallah, O. Abdinov, B. Abeloos, S. H. Abidi, O. S. AbouZeid, N. L. Abraham, H. Abramowicz, H. Abreu, R. Abreu, Y. Abulaiti, B. S. Acharya, S. Adachi, L. Adamczyk, J. Adelman, M. Adersberger, T. Adye, A. A. Affolder, T. Agatonovic-Jovin, C. Agheorghiesei, J. A. Aguilar-Saavedra, S. P. Ahlen, F. Ahmadov, G. Aielli, S. Akatsuka, H. Akerstedt, T. P. A. Åkesson, E. Akilli, A. V. Akimov, G. L. Alberghi, J. Albert, P. Albicocco, M. J. Alconada Verzini, M. Aleksa, I. N. Aleksandrov, C. Alexa, G. Alexander, T. Alexopoulos, M. Alhroob, B. Ali, M. Aliev, G. Alimonti, J. Alison, S. P. Alkire, B. M. M. Allbrooke, B. W. Allen, P. P. Allport, A. Aloisio, A. Alonso, F. Alonso, C. Alpigiani, A. A. Alshehri, M. Alstaty, B. Alvarez Gonzalez, D. Álvarez Piqueras, M. G. Alviggi, B. T. Amadio, Y. Amaral Coutinho, C. Amelung, D. Amidei, S. P. Amor Dos Santos, A. Amorim, S. Amoroso, G. Amundsen, C. Anastopoulos, L. S. Ancu, N. Andari, T. Andeen, C. F. Anders, J. K. Anders, K. J. Anderson, A. Andreazza, V. Andrei, S. Angelidakis, I. Angelozzi, A. Angerami, A. V. Anisenkov, N. Anjos, A. Annovi, C. Antel, M. Antonelli, A. Antonov, D. J. Antrim, F. Anulli, M. Aoki, L. Aperio Bella, G. Arabidze, Y. Arai, J. P. Araque, V. Araujo Ferraz, A. T. H. Arce, R. E. Ardell, F. A. Arduh, J-F. Arguin, S. Argyropoulos, M. Arik, A. J. Armbruster, L. J. Armitage, O. Arnaez, H. Arnold, M. Arratia, O. Arslan, A. Artamonov, G. Artoni, S. Artz, S. Asai, N. Asbah, A. Ashkenazi, L. Asquith, K. Assamagan, R. Astalos, M. Atkinson, N. B. Atlay, K. Augsten, G. Avolio, B. Axen, M. K. Ayoub, G. Azuelos, A. E. Baas, M. J. Baca, H. Bachacou, K. Bachas, M. Backes, M. Backhaus, P. Bagnaia, H. Bahrasemani, J. T. Baines, M. Bajic, O. K. Baker, E. M. Baldin, P. Balek, F. Balli, W. K. Balunas, E. Banas, Sw. Banerjee, A. A. E. Bannoura, L. Barak, E. L. Barberio, D. Barberis, M. Barbero, T. Barillari, M-S Barisits, T. Barklow, N. Barlow, S. L. Barnes, B. M. Barnett, R. M. Barnett, Z. Barnovska-Blenessy, A. Baroncelli, G. Barone, A. J. Barr, L. Barranco Navarro, F. Barreiro, J. Barreiro Guimarães da Costa, R. Bartoldus, A. E. Barton, P. Bartos, A. Basalaev, A. Bassalat, R. L. Bates, S. J. Batista, J. R. Batley, M. Battaglia, M. Bauce, F. Bauer, H. S. Bawa, J. B. Beacham, M. D. Beattie, T. Beau, P. H. Beauchemin, P. Bechtle, H. P. Beck, K. Becker, M. Becker, M. Beckingham, C. Becot, A. J. Beddall, A. Beddall, V. A. Bednyakov, M. Bedognetti, C. P. Bee, T. A. Beermann, M. Begalli, M. Begel, J. K. Behr, A. S. Bell, G. Bella, L. Bellagamba, A. Bellerive, M. Bellomo, K. Belotskiy, O. Beltramello, N. L. Belyaev, O. Benary, D. Benchekroun, M. Bender, K. Bendtz, N. Benekos, Y. Benhammou, E. Benhar Noccioli, J. Benitez, D. P. Benjamin, M. Benoit, J. R. Bensinger, S. Bentvelsen, L. Beresford, M. Beretta, D. Berge, E. Bergeaas Kuutmann, N. Berger, J. Beringer, S. Berlendis, N. R. Bernard, G. Bernardi, C. Bernius, F. U. Bernlochner, T. Berry, P. Berta, C. Bertella, G. Bertoli, F. Bertolucci, I. A. Bertram, C. Bertsche, D. Bertsche, G. J. Besjes, O. Bessidskaia Bylund, M. Bessner, N. Besson, C. Betancourt, A. Bethani, S. Bethke, A. J. Bevan, R. M. Bianchi, O. Biebel, D. Biedermann, R. Bielski, N. V. Biesuz, M. Biglietti, J. Bilbao De Mendizabal, T. R. V. Billoud, H. Bilokon, M. Bindi, A. Bingul, C. Bini, S. Biondi, T. Bisanz, C. Bittrich, D. M. Bjergaard, C. W. Black, J. E. Black, K. M. Black, D. Blackburn, R. E. Blair, T. Blazek, I. Bloch, C. Blocker, A. Blue, W. Blum, U. Blumenschein, S. Blunier, G. J. Bobbink, V. S. Bobrovnikov, S. S. Bocchetta, A. Bocci, C. Bock, M. Boehler, D. Boerner, D. Bogavac, A. G. Bogdanchikov, C. Bohm, V. Boisvert, P. Bokan, T. Bold, A. S. Boldyrev, A. E. Bolz, M. Bomben, M. Bona, M. Boonekamp, A. Borisov, G. Borissov, J. Bortfeldt, D. Bortoletto, V. Bortolotto, D. Boscherini, M. Bosman, J. D. Bossio Sola, J. Boudreau, J. Bouffard, E. V. Bouhova-Thacker, D. Boumediene, C. Bourdarios, S. K. Boutle, A. Boveia, J. Boyd, I. R. Boyko, J. Bracinik, A. Brandt, G. Brandt, O. Brandt, U. Bratzler, B. Brau, J. E. Brau, W. D. Breaden Madden, K. Brendlinger, A. J. Brennan, L. Brenner, R. Brenner, S. Bressler, D. L. Briglin, T. M. Bristow, D. Britton, D. Britzger, F. M. Brochu, I. Brock, R. Brock, G. Brooijmans, T. Brooks, W. K. Brooks, J. Brosamer, E. Brost, J. H Broughton, P. A. Bruckman de Renstrom, D. Bruncko, A. Bruni, G. Bruni, L. S. Bruni, BH Brunt, M. Bruschi, N. Bruscino, P. Bryant, L. Bryngemark, T. Buanes, Q. Buat, P. Buchholz, A. G. Buckley, I. A. Budagov, F. Buehrer, M. K. Bugge, O. Bulekov, D. Bullock, T. J. Burch, H. Burckhart, S. Burdin, C. D. Burgard, A. M. Burger, B. Burghgrave, K. Burka, S. Burke, I. Burmeister, J. T. P. Burr, E. Busato, D. Büscher, V. Büscher, P. Bussey, J. M. Butler, C. M. Buttar, J. M. Butterworth, P. Butti, W. Buttinger, A. Buzatu, A. R. Buzykaev, S. Cabrera Urbán, D. Caforio, V. M. Cairo, O. Cakir, N. Calace, P. Calafiura, A. Calandri, G. Calderini, P. Calfayan, G. Callea. Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Journal of High Energy Physics, 2017, 191, DOI: 10.1007/JHEP11(2017)191