Measurement of the \( t\overline{t}\gamma \) production cross section in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector

Journal of High Energy Physics, Nov 2017

The cross section of a top-quark pair produced in association with a photon is measured in proton-proton collisions at a centre-of-mass energy of \( \sqrt{s}=8 \) TeV with 20.2 fb−1 of data collected by the ATLAS detector at the Large Hadron Collider in 2012. The measurement is performed by selecting events that contain a photon with transverse momentum p T > 15 GeV, an isolated lepton with large transverse momentum, large missing transverse momentum, and at least four jets, where at least one is identified as originating from a b-quark. The production cross section is measured in a fiducial region close to the selection requirements. It is found to be 139 ± 7 (stat.) ± 17 (syst.) fb, in good agreement with the theoretical prediction at next-to-leading order of 151 ± 24 fb. In addition, differential cross sections in the fiducial region are measured as a function of the transverse momentum and pseudorapidity of the photon.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

Measurement of the \( t\overline{t}\gamma \) production cross section in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector

Received: June p Measurement of the tt production cross section in 0 Also at Department of Physics, Nanjing University , Jiangsu , China The cross section of a top-quark pair produced in association with a photon 20:2 fb 1 of data collected by the ATLAS detector at the Large Hadron Collider in 2012. The measurement is performed by selecting events that contain a photon with transverse momentum pT > 15 GeV, an isolated lepton with large transverse momentum, large missing transverse momentum, and at least four jets, where at least one is identi ed as originating from a b-quark. The production cross section is measured in a selection requirements. It is found to be 139 with the theoretical prediction at next-to-leading order of 151 momentum and pseudorapidity of the photon. Hadron-Hadron scattering (experiments); Top physics 1 Introduction Data and simulation samples Event reconstruction and selection Event reconstruction Event selection De nition of the ducial phase space 5 Templates Prompt-photon template Hadronic-fake template Electron-fake template Modelling uncertainties Experimental uncertainties Template-related uncertainties 9 Results 10 Conclusions The ATLAS collaboration { i { 6 Background estimation Background from hadrons misidenti ed as photons Background from electrons misidenti ed as photons Background events with a prompt photon Measurement of the ducial cross section Theoretical prediction Fit strategy Systematic uncertainties 2 3 4 7 8 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 6.3 7.1 7.2 8.1 8.2 8.3 Introduction Measurements of top-quark properties play an important role in testing the Standard Model (SM) and its possible extensions. Studies of the production and dynamics of a top-quark pair in association with a photon (tt ) probe the t electroweak coupling. For instance, deviations in the pT spectrum of the photon from the SM prediction could point to new physics through anomalous dipole moments of the top quark, as discussed in refs. [1{6]. Photons can originate not only from top quarks, but also from their decay products, tron collider at a centre-of-mass energy of p s = 1:96 TeV by the CDF Collaboration [7]. Finally, observation of the tt process was reported by the ATLAS Collaboration in pp This paper describes a measurement of the tt production cross section, based on a data set recorded with the ATLAS detector in 2012 at a centre-of-mass energy of p s = 8 TeV and corresponding to an integrated luminosity of 20:2 fb 1. The cross section is measured with a maximum-likelihood t using templates de ned within a ducial volume chosen to be close to the selection requirements implemented in the analysis. Only nal states with exactly one reconstructed lepton (electron or muon), including those originating from lepton decays, are considered. These nal states are referred to as the single-lepton channel in the following. In addition to the inclusive cross section, di erential cross sections as a function of the transverse momentum pT and the pseudorapidity of the photon are measured for the same ducial volume. The cross sections are compared to the theoretical calculations at next-to-leading order (NLO) [9] in the strong interaction. 2 ATLAS detector The ATLAS detector is described in detail elsewhere [10]. Here, a short overview is presented with a focus on the electromagnetic calorimeter, which provides an accurate measurement of energetic photons. The major components of the ATLAS detector are an inner detector (ID) surrounded by a thin superconducting solenoid providing a 2 T axial magnetic eld, electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS). The ID provides tracking information and is composed of three subsystems. The pixel and silicon microstrip detectors cover the pseudorapidity range j j < 2:5,1 while the transition radiation tracker has an acceptance range of j j < 2:0 and provides identi cation information for electrons. The MS consists of a large superconducting air-core toroidal magnet system, three stations of chambers for high-precision tracking measurements in the region j j < 2:7, and a muon trigger system e ective over the region j j < 2:4. 1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r; ) are used in the transverse plane, being the azimuthal angle around the z-axis. The pseudorapidity is de ned in terms of the polar angle as = ln tan( =2). { 1 { The electromagnetic calorimeter (EMC) is a lead/liquid-argon detector composed of a barrel (j j < 1:475) and two endcaps (1:375 < j j < 3:2). For j j < 2:5, the calorimeter has three layers, longitudinal in shower depth, with the rst layer having the highest granularity direction, and the second layer collecting most of the electromagnetic shower energy for high-pT electrons or photons. A thin presampling layer in the range j j < 1:8 is used to correct for the energy lost by EM particles upstream of the calorimeter. The hadronic calorimeter system, which surrounds the electromagnetic calorimeter, is based on two di erent active media, scintillator tiles or liquid argon, and with steel, copper, or tungsten as the absorber materials. Photons are identi ed as narrow, isolated showers in the EMC with no spill-over into the hadronic calorimeter. The ne segmentation of the ATLAS calorimeter allows e cient rejection of jets fragmenting to high-energy mesons that could be misidenti ed as isolated prompt photons. 0 or 3 Data and simulation samples Monte Carlo simulated events are used to evaluate signal e ciencies and backgrounds, and to estimate and correct for resolution e ects. Additional simulated inelastic pp collisions, generated with Pythia 8.160 [11] using the MSTW2008 LO [12] parton distribution functions (PDFs) and parameter values set according to the A2 tune [13], are overlaid to simulate the e ects of pile-up from additional interactions in the same and nearby bunch crossings. The tt signal sample is modelled with MadGraph5 aMC@NLO 2.1.0 [14], interfaced to Pythia 6.427 [15] for parton showering and hadronisation. The tt matrix element is generated at leading order (LO) including the decays of the top quarks. The photons can be emitted from the incoming partons, from the top quark, or from the decay products. The renormalisation ( R) and factorisation ( F) scales are chosen such that the top-quark pair (tt) events, produced with the same settings as used for the tt production, describe the tt data well. The scale choice is made to have the best agreement with the results in ref. [16]. Good agreement with the data is obtained for R = F = 2mtop, where mtop = 172:5 GeV is the mass of the top quark used in all simulated samples. In order to avoid infrared and collinear singularities, the following kinematic requirements are applied to the generated events: the photon transverse momentum must be larger than 10 GeV and the absolute value of its pseudorapidity less than 5, at least one charged lepton with a transverse momentum larger than 15 GeV, and the distance R = p( )2 + ( )2 between the photon and all other charged particles in the nal state must be larger than 0:2. The CTEQ6L1 (LO) PDF [17] is used both for the matrix element and in the Pythia 6 parton shower, using the corresponding Perugia2011C tune [18]. Additional photon radiation is generated with Photos 2.15.4 [19, 20]. The decays of the leptons are handled by Tauola 2.7 [21]. The signal sample is simulated for single-lepton and dilepton tt events. The sample is normalised to the NLO prediction using K-factors, as described in section 7.2. The production of W +jets and Z +jets nal states is simulated Sherpa 1.4.0 [22] event generator, using the NLO CT10 PDF [23]. The matrix elements are calculated at LO with up to three nal-state partons. The parton shower uses Sherpa's default set of tuned parameters. To evaluate the uncertainty due to W +jets modelling, an { 2 { additional sample generated with Alpgen 2.14 [24], interfaced to Pythia 6.426, is used. For both the matrix-element calculations and the parton-shower evolution, the CTEQ6L1 PDF is used. The tuned parameters for the parton shower, the additional photon radiation, and lepton decays are handled in the same way as for the signal tt sample. No dedicated samples were produced for Z +jets nal states due to the expected small contribution to the total uncertainty. Electroweak production of the top quark (single-top) is simulated with PowhegBox v1.0 [25, 26] using the NLO CT10 PDF. The same models are employed for parton shower, photon radiation, and lepton decays as used for the signal tt sample. The event generator versions for these processes are the ones used for the tt sample, apart from using the NLO calculation in ref. [ 33 ]. The tt process is simulated using the NLO quantum-chromodynamics (QCD) matrixelement event generator Powheg-Box v1.0 [34{36], using the CT10 PDF and interfaced to Pythia 6.427 for the parton shower, fragmentation and underlying-event modelling. Other settings are handled in the same way as for the signal tt sample. This sample is used exclusively to validate the data-driven backgrounds. All samples are processed either through the full ATLAS detector simulation [37] based on Geant 4 [38], or through a faster simulation using parameterised showers in the calorimeters [39]. The resulting simulated events are processed with the same reconstruction algorithms and analysis chain as the data. at p The measurement is based on data collected by the ATLAS experiment in pp collisions s = 8 TeV in 2012. The corresponding integrated luminosity is 20:2 fb 1. The absolute luminosity scale is derived from beam-separation scans performed in November 2012 [40]. 4 Event reconstruction and selection The single-lepton tt nal state is characterised by the presence of a high-pT photon, an isolated lepton with a large pT, large missing transverse momentum originating from the neutrino in the leptonic decay of a W boson, two jets from the hadronic decay of the other W boson, and two b-quark jets. 4.1 Event reconstruction Electron candidates are reconstructed from energy deposits in the central region of the EMC with associated tracks in the ID [41]. The candidates have to satisfy the tight identication criteria [42] and are required to have a transverse momentum of pT > 25 GeV and { 3 { j clj < 2:47, excluding the transition region between barrel and endcap EM calorimeters, 1:37 < j clj < 1:52. The variable cl is the pseudorapidity of the electromagnetic energy cluster with respect to the geometric centre of the detector. Electrons are further required to have a longitudinal impact parameter with respect to the primary vertex2 of less than 2 mm. Isolation requirements on calorimeter and tracking variables are used to reduce the background from jets misidenti ed as electrons. The calorimeter isolation variable is based on the energy sum of cells within a cone of size R = 0:2 around the direction of each electron candidate. This energy sum excludes cells associated with the electron's cluster and is corrected for leakage from the electron's cluster itself and for energy deposits from pile-up. The tracking isolation variable is based on the sum of the transverse momenta of all tracks around the electron in a cone of size R = 0:3, excluding the electron track. For both isolation variables, requirements are chosen to give separately a 90% electron selection e ciency for electrons from Z ! ee decays in each pT bin. Muon candidates are identi ed by matching tracks in the muon spectrometer with tracks in the ID and are required to have j j < 2:5 and pT > 25 GeV [43, 44]. The longitudinal impact parameter with respect to the primary vertex is required to be less than 2 mm. To reduce the background from muons originating from heavy- avour decays inside jets, muons are required to be separated by R > 0:4 from the nearest jet and to be isolated. The muon isolation variable, de ned as the ratio of the sum of pT of tracks, excluding the muon, in a cone of variable size R = 10 GeV=pT( ), to the pT of the muon is required to be smaller than 0:05 [45]. This isolation requirement results in an e ciency of about 97% for muons from Z ! decays. Reconstruction of photons [46] starts with forming seed clusters in the EMC with a size 0:075 0:123 in the space and with transverse energy above 2:5 GeV using the sliding-window algorithm [47]. Tracks in the ID are matched to EM seed clusters and are used to form conversion-vertex candidates where possible. The conversion-vertex candidates are then matched to the seed clusters. A nal algorithm decides whether a seed cluster corresponds to an unconverted photon, a converted photon or a single electron based on the matching to conversion vertices or tracks and on the cluster and track(s) four-momenta. Photon candidates must ful l identi cation criteria based on shower-shape variables containing information from the rst layer of the EMC (strip layer) [48]. All photons are required to have a transverse momentum of at least 15 GeV and j clj < 2:37, excluding the transition region of the EMC, 1:37 < j clj < 1:52. Jet candidates are reconstructed with the anti-kt [49] algorithm with a radius parameter R = 0:4, using cell clusters [50] in the calorimeter, which are calibrated using the local cluster weighting method [51]. The energies of jets are then calibrated using an energyand -dependent simulation-based calibration scheme with in situ corrections based on data. Jets are required to have pT > 25 GeV and j j < 2:5. To suppress jets from pile-up, a requirement on the jet vertex fraction (JVF) is imposed. It is de ned as the ratio of the sum of the pT of tracks associated with both the jet and the primary vertex to the 2Events are required to contain a hard collision primary vertex with at least four associated charged particle tracks of pT > 0:4 GeV. If there are multiple primary vertices in an event, the one with the largest sum of track p2T is selected. { 4 { sum of the pT of all tracks associated with the jet. Jets with pT < 50 GeV and j j < 2:4 are required to satisfy jJVFj > 0:5 [52], which achieves high e ciency for jets from hard scatters and high rejection of pile-up jets. Muons within a cone of R = 0:4 around a jet are removed, as well as the closest jet within a cone of R = 0:2 (0:1) around an electron (photon). Finally, electrons within a cone of R = 0:4 around a jet are removed. Jets containing b-hadrons are tagged by an algorithm that uses multivariate techniques combining information from the impact parameters of displaced tracks as well as topological properties of secondary and tertiary decay vertices reconstructed within the jet [53{55]. The working point used for this selection corresponds to a 70% e ciency for b-jets with pT > 20 GeV and j j < 2:5 in simulated tt events, and a light-quark or gluon jet rejection factor of 140. The missing transverse momentum, with magnitude ETmiss, is reconstructed as the transverse component of the negative vector sum of the momenta of all electrons, muons, photons and jets, as well as calibrated calorimeter energy clusters not associated with any of the above [56]. 4.2 Event selection A single-lepton trigger is used to select the events. For the electron channel, the trigger requires either a pT threshold of 24 GeV and isolation, or a pT threshold of 60 GeV independent of isolation. For the muon channel, the trigger requires a pT threshold of 24 GeV and isolation, or 34 GeV independent of isolation. In both channels, the presence of exactly one lepton with pT > 25 GeV passing the trigger requirements and at least four jets is required. In order to reduce several background contributions, but mainly the W +jets background, at least one jet is required to be tagged as a b-jet. For the muon channel, additional requirements on the missing transverse momentum ETmiss > 30 GeV and mTW > 30 GeV, due to the larger multijet background. and on mTW , the transverse mass of the W boson candidate [57], ETmiss > 20 GeV and ETmiss + mTW > 60 GeV, are imposed. For the electron channel the requirements are tighter, The tt candidates are selected by applying the above criteria and by requiring exactly one photon. Events with a jet within a cone of R = 0:5 around the selected photon are rejected to remove photon radiation from quarks. In order to enrich the sample with events in which a photon is radiated from a top quark, the distance between the selected photon and lepton direction is required to be larger than R = 0:7. For the electron channel, the invariant mass of the electron and the photon has to be outside a 5 GeV mass window around the Z boson mass (i.e. me < 86 GeV or me > 96 GeV) in order to suppress Z+jet events with one electron misidenti ed as a photon. Additional control regions are de ned in section 5. The selection yields a total of 1256 and 1816 candidate events in the electron and muon channels, respectively. From simulation studies, 440 90 and 720 140 signal events are predicted in the electron and the muon channels, respectively, including all systematic { 5 { HJEP1(207)86 in section 6. pT and 1:37{2:37. 4.3 The uncertainties discussed in section 8. The photon pT and j j distributions after the selection are shown in gure 1. The data distributions are compared to the predictions from simulation and data-driven estimates for both the signal and backgrounds, as explained For the measurement of the di erential cross sections, the phase space in the variables is divided into ve bins each, chosen to be su ciently large compared to the resolution in the respective variable and to contain a similar number of predicted signal events. The bins in photon pT are 15{25 GeV, 25{40 GeV, 40{60 GeV, 60{100 GeV, and 100{300 GeV, and for the photon j j they are 0{0:25, 0:25{0:55, 0:55{0:90, 0:90{1:37, and De nition of the ducial phase space ducial region for this analysis is de ned for Monte Carlo events at particle level (before detector simulation) using the following particle de nitions and event selection, which are designed to mimic those at the reconstruction level (after detector simulation). The objects are constructed from stable particles in the event record of the generator with a lifetime larger than 30 ps. Leptons. Electrons and muons with pT > 10 GeV and j j < 2:7 are combined with all photons that do not originate from hadron decays and are within a cone of R = 0:1 and their four-momenta are added together. These modi ed leptons are then required to have pT > 25 GeV, j j < 2:5 and not originate from a hadron decay. Jets. Jets are clustered with the anti-kt algorithm with a radius parameter of R = 0:4. Neutrinos and muons are not considered in the clustering. Jets are required to have pT > 25 GeV and j j < 2:5. 0:3 of the jet axis. 15 GeV and j j < 2:37. b-jets. Jets are tagged as b-jets if they contain a b-hadron with pT > 5 GeV within R = Photons. Photons are required to not originate from a hadron decay and to satisfy ET > Overlap removal. The applied overlap removal procedure is the same as for the reconstructed objects, as described in section 4.1. The following event selection based on the object de nitions listed above is applied to de ne the ducial phase space: exactly one electron (muon) from a W boson decay is required in the electron (muon) channel; at least four jets have to be selected, among which at least one must be a b-jet; and exactly one photon is required. Additionally, the event is discarded if the photon has R(jet; ) < 0:5 with any jet or R(`; ) < 0:7 where ` is the electron or muon. In order to obtain a common ducial region for the electron channel and the muon channel, the requirements imposed at the reconstruction level on ETmiss, mTW , and me are not included in the ducial region de nition. { 6 { HJEP1(207)86 it it D −2.5 −2 −1.5 −1 −0.5 0 0.5 a order calculation [9], as well as for other processes with prompt photons, such as W are estimated from data. The shaded band corresponds to the total uncertainty of the expected signal and backgrounds. Panels (a) and (b) show the photon pT distributions, where the over ow is included in the last bin, while (c) and (d) show the distributions of the photons. (b) (d) Photon pT [GeV] Photon pT [GeV] Photon η Photon η After the event selection there are three classes of events, 1) those with prompt photons, 2) those with photons from hadron decays or hadrons misidenti ed as photons, called hadronic fakes, and 3) those from electrons misidenti ed as photons. The prompt-photon category includes both the signal events and other background processes, such as W or Z boson production with prompt photons. The extraction of the total and di erential cross sections is based on a likelihood t using three templates, one for the prompt-photon events, one for the hadronic-fake events and one for electrons misidenti ed as photons. The normalisations of the rst two templates are free parameters in the likelihood t, while for the third template the normalisation is xed to the data-driven estimate of the number of events with an electron misidenti ed as a photon, as described in section 6.2. The variable used for the templates is piTso, the sum of the transverse momenta of all tracks within a cone with an opening angle around the photon of 0:2 rad. This variable yields the best discrimination between signal and background and has almost no dependence on the amount of pile-up [8]. A detailed description of the likelihood t is given in section 7.2, while the background determination is discussed in section 6. 5.1 Prompt-photon template The prompt-photon template is extracted using the photons from the tt signal simulation after the event selection described in section 4. In addition, only reconstructed photons that are geometrically matched to a particle-level photon within R of 0.1 are selected. Approximately 95% of the photons in the selected signal events ful l this condition. The prompt-photon template is shown in gure 2. Templates extracted from W Z +jets simulation are consistent with this template within statistical uncertainties. The simulated sample is large enough to ensure a small statistical uncertainty of the template for the total cross-section measurement, with a maximum uncertainty of 4% in the last bin. For the di erential measurements, the template is extracted for each bin of the transverse momentum and pseudorapidity distributions of the photon. In this case, the uncertainty in the last bin of the distribution can be as large as 13%. Both the statistical and systematic uncertainties, discussed in section 8, are taken into account when performing the likelihood t described in section 7.2. 5.2 Hadronic-fake template The hadronic-fake template is extracted from a control region in data with at least four jets. Events must have at least one photon candidate that fails to satisfy at least one of the four photon identi cation criteria constructed using shower-shape variables from the rst layer of the EMC. The strip layer is nely segmented in for suppressing fake photons, which typically have a broader shower pro le. While these variables have strong discriminating power between signal and fake photons, they have negligible correlation with the photon isolation [46]. The control region is de ned with the same jet multiplicity requirement as for the signal region because the shape of the template depends on the jet multiplicity. In addition, to prevent electrons that are misidenti ed as photons from entering the control sample, hadronic-fake photon candidates within R = 0:1 of an electron are rejected. { 8 { ATLAS Prompt γ Template; Simulation e→γ Fake Template; Data Hadronic Fake Template; Data hadronic fakes and electron fakes. The template for the signal photon is taken from simulation, while the other two templates are derived from data. The distributions are normalised to unity and the last bins contain the over ows. The shaded bands show the total uncertainty in each template. The shape of the template depends on both the pT and of the hadronic fakes. The T hadronic fakes are less isolated at higher pT values, as they are more likely to arise from energetic jets which have larger piso values. The dependence on is due to the varying amount of material in front of the calorimeter. Because of the di erent pT and distributions of the hadronic fakes in the control region and in the signal region, the hadronic-fake template for the total cross-section measurement is calculated as a weighted sum of templates determined in bins of the hadronic fakes: ve for pT (here, the same bins as for the photon pT in the di erential cross-section measurement are chosen) and two for j j (j j < 1:80 and 1:80 < j j < 2:37). The weights w are the fraction of the hadronic-fake events in a given pT or range, estimated from another control region in data, closer to the signal region although with fewer events, in order to correct the pT and distributions of the hadronic fakes. This region is de ned exactly in the same way as the signal region, described in section 4, but replacing the nominal photon selection by one where the photon fails to satisfy at least one of the tight identi cation criteria. The di erence in the event topologies between the two control regions was found to have a negligible e ect on the nal template shape. Since no correlation between pT and of hadronic fakes is observed in this control region, the dependence of the template on pT and can be treated separately. The nal weighted hadronic-fake template for the inclusive measurement, shown in gure 2, is calculated according to X wpT;i TphT-f;aike + X w ;j T h;-jfake 2 j=1 1 A ; HJEP1(207)86 where TphT-f;aike is the hadronic-fake template of the pT bin i and wpT;i is its corresponding weight, while T h;-jfake is the hadronic-fake template of the bin j with w ;j as its associated weight. The index i runs over the ve bins in pT, while the index j runs over the two bins in . Similarly, for each bin of the di erential cross-section measurement in photon pT ( ), a template is obtained by averaging over the hadronic-fake (pT) dependence. The main uncertainty in this template stems from a small contamination of the selected events by prompt photons. Electrons misidenti ed as photons represent the second-largest background. Electrons and photons have very similar shower shapes in the electromagnetic calorimeter. For this reason, an electron can be misidenti ed as a photon if the associated track is poorly reconstructed, or in case of nearby jet activity it can be misidenti ed as a converted photon. A piso template is derived from photons in a control sample containing electron-photon pairs with an invariant mass compatible with the Z boson mass, hereafter called Z ! e + fake events. In these events the photon is predominantly an electron misidenti ed as a photon. T The control sample selection requires an electron and a photon with an opening angle larger than 150 and an invariant mass in the range 70{110 GeV. The pT of the electron has to be larger than that of the photon. In order to select events with a topology close to the signal events, a requirement of ETmiss > 30 GeV is applied. Other backgrounds in this region are estimated from a sideband t to the me distribution modelled by a Gaussian function. The corresponding template, after background subtraction, is shown in gure 2. 6 Background estimation Several background processes can mimic the tt signature of the signal events. In order of importance the main background contributions are fake photons from misidenti ed hadrons, predominantly in tt events (section 6.1), and events with electrons misidenti ed as photons (section 6.2). Further small contributions stem from processes with prompt photons (section 6.3). The sizes of the background contributions are given in section 9. 6.1 Background from hadrons misidenti ed as photons The main background contribution to the tt process comes from hadrons, or photons from hadron decays, that are misidenti ed as prompt photons. This background is estimated from data using the template t. The main photon background contribution is tt production with one hadronic fake. The derivation of the template used for the hadrons misidenti ed as photons is described in section 5.2. 6.2 Background from electrons misidenti ed as photons Events with electrons misidenti ed as photons are the second largest background contribution. The main contribution arises from tt events with both top quarks decaying semileptonically thereby producing two electrons or one electron and one muon. The second largest contribution is Z+jets production where the Z boson decays into an e+e pair and one of the electrons is misidenti ed as a photon. The contribution of events with electrons misidenti ed as photons is estimated with a fully data-driven method. The probability for an electron to fake a photon (fake rate) is calculated using two control regions, one enriched in Z ! ee and one enriched in events reconstructed as Z ! e + fake events. The event selections for the Z ! ee and Z ! e + fake samples require two back-to-back objects, either two electrons or an electron and a photon. The de nitions are the same as for the signal selection except for the second electron in the Z ! ee selection, where the pT threshold is lowered from 25 GeV to 15 GeV so that it is the same as for the photon. In the Z ! e + fake selection the electron is required to have a larger pT than the photon. In both selections the object with the larger pT is the tag while the other one is the probe, i.e. the tag is always an electron. The numbers of Z ! ee and Z ! e + fake events are determined from a t of the invariant mass distribution of the two objects using a sum of a Crystal-Ball [58] and a Gaussian function. The t is performed in the region where the invariant mass lies between 70 GeV and 110 GeV. The fake rate is calculated from the ratio of these two numbers, as a function of the transverse energy and the pseudorapidity of the photon. A correction accounting for the di erent reconstruction and identi cation e ciencies for electrons and photons is applied. The contribution of electrons reconstructed as photons in the signal region is then estimated by applying the fake rate to a modi ed signal region, where an electron ful lling the same kinematic selection as the photon is required. This background contributes 317 7 41 and 385 6 42 events in the electron and muon channels, respectively, where the rst error is statistical and the second is systematic. The systematic uncertainty is estimated by varying the range and functions used in the t of the two invariant mass distributions. 6.3 Background events with a prompt photon There are several background processes to tt production that can become a background to the tt sample, if an additional prompt photon is present. Multijet production with an associated prompt photon is a source of background when one of the jets in the event is misidenti ed as a lepton, referred to as a fake lepton. In order to estimate this background, a control sample is created that uses the same event selection as for the signal except that the lepton identi cation criteria are loosened. To account for the sample composition in fake and real leptons, each event is assigned a weight computed from the matrix method [57] in order to obtain a distribution corresponding to fake leptons. To calculate the contribution of events with a prompt photon in this sample, a likelihood t is performed on the piTso distribution of these weighted events, using the prompt-photon and hadron-fake templates described in section 5.1 and section 5.2, respectively. This results in estimated background contributions of 7:5 3:6 events in the electron channel and 8:3 5:2 events in the muon channel. The uncertainties are purely statistical. Additional backgrounds from W +jets, Z +jets, single top quark and diboson production are estimated using Monte Carlo simulations. For the W +jets events, the cross sections from simulation do not agree with the data, as the fraction of heavy- avour jets Process Multijet + W +jets Z +jets Single top + Diboson + e + jets + jets 7:5 65 35 13 2:6 3:6 25 19 7 1:5 8:3 97 38 19 2:5 5:2 25 20 10 1:4 include all sources of systematic uncertainty described in section 8. observed in data is smaller than the prediction obtained using the Sherpa generator, and thus a scale factor is applied to the prediction of the simulation. This scale factor is derived from a control region in data and is 0:69 0:16 for the electron channel and 0:76 0:14 for the muon channel. The control region is de ned exactly as for the signal region, except for the required number of jets (between one and three), the number of b-tagged jets (exactly one), and for an additional requirement on the invariant mass of the lepton and the photon, which has to be less than 40 GeV. The uncertainties include the statistical and systematic uncertainty induced by the subtraction of the non-W +jets events from the control region. A comparison between Alpgen and the nominal generation with Sherpa gives an additional 20% uncertainty. For the Z +jets, single-top and diboson production with an additional photon, a 50% theoretical uncertainty is assumed. In addition, all uncertainties discussed in section 8 are taken into account. The expected yields for these backgrounds are summarised in table 1. 7 Measurement of the ducial cross section In this section, the theoretical predictions for the ducial region tt cross section and di erential cross sections are described. The t strategy used to extract these from the data is also presented. 7.1 Theoretical prediction Production cross sections of a top-quark pair in association with a prompt photon have been calculated at NLO in QCD [9], extending calculations obtained assuming stable top quarks [59]. While the results presented in ref. [9] were calculated at a centre-of-mass energy of p s = 14 TeV, a dedicated calculation at p s = 8 TeV has been performed in the singlelepton channel both at LO and NLO using the same techniques as in ref. [9]. The CTEQ6L1 (CT10) PDF set is used for the LO (NLO) calculation, while for both a ne-structure constant = 1=137 and renormalisation and factorisation scales R = F = mtop are used. Further computations were performed by simultaneously varying the scales R and F by a factor of 2 or 0:5. The LO calculation agrees with the cross section from MadGraph within 2%, for scale choices of both mtop and 2mtop. The ratio of the NLO and LO cross sections, known as the K-factor, is obtained from the NLO theory calculation at a scale of mtop and the LO MadGraph sample at a scale of 2mtop, after applying the restricted phase space requirements described in section 3. The overall K-factor was calculated to be K = 1:90 0:25 0:12, with the rst uncertainty accounting for scale variation and the second for PDF set variation. For the di erential cross-section predictions, the K-factors for the corresponding bin in pT or are used. These K-factors are used to correct the prediction from simulation with MadGraph. The K-factor derived above is then used to calculate the cross section at NLO by using only events from the simulation with MadGraph in the same ducial region as de ned in section 4.3. The inclusive cross section is calculated to be 151 24 fb. In addition, the cross section is calculated in bins of pT and with the same ducial requirements as for the cross-section measurement. The cross section for tt production is extracted from the observed binned piso distribution employing a likelihood t. There are two free parameters in the t, i.e. the total number of signal events and the total number of hadronic-fake events. The piTso templates used in the t are shown in gure 2. The prompt-photon template is used for the signal and T all backgrounds with a prompt photon. For the background from electrons misidenti ed as photons, the electron-fake template is utilised and for hadronic fakes the hadronic-fake template is utilised. All backgrounds, except for the hadronic fakes, are described by a Poisson probability distribution with the mean values determined in section 6. The likelihood function L is de ned as the product L = Y P i;j Ni;j jNis;j + PNib;j b Y G(0j t; 1): t (7.1) The Poisson function P (Ni;j jNis;j + Pb Nib;j ) models the event yield in bin j of the piso distribution of bin i of the pT or T distribution, where Ni;j is the observed number of events and Nis;j and Nib;j are the expected numbers of signal and background events. There is only one bin for the inclusive measurement, while there are ve bins for each of the di erential cross-section measurements, corresponding to the bins in photon pT or . The Gaussian function G(0j t; 1) of unit width models the systematic uncertainty t, where t is the parameterisation of this uncertainty. The sources of systematic uncertainty are discussed in section 8. events by The inclusive and di erential ducial cross sections are related to the number of signal L i Ci fi;j = Nis;j ; where L is the integrated luminosity of the data sample, i is the ducial cross section to be determined, fi;j is the fraction of events falling into bin j of piTso of bin i, calculated from the signal template, and Ci is the ratio of the number of reconstructed events to the number of generated events in the ducial region in bin i. The term Ci can also be expressed as the ratio of the number of reconstructed events to the number of reconstructed events falling into the ducial region in bin i, multiplied by the signal e ciency. The ratio Ci therefore corrects for the event selection e ciency and the migration of events between the ducial and the non- ducial region, including leptonic decays, or between di erent bins i, in the case of the di erential cross-section measurement. The values of Ci range from 0:21 to 0:38 (0:38 to 0:62) for the electron (muon) channel, depending on the bin in pT or . For the di erential cross-section measurements, this means that the cross section i is computed in each bin i using a bin-by-bin unfolding. To consider the e ect of a systematic uncertainty t on the value of a parameter p in the t, p is multiplied by a response function, which is a function of the nuisance parameter t used to parameterise this uncertainty. The parameters are the variables used to calculate Nis;j or Nib;j , uncertainty. where p is the uncertainty of parameter p due to the systematic uncertainty t. There could be multiple response functions multiplying p, if it is a ected by more than one systematic The ducial cross sections are extracted by maximising the likelihood function (eq. (7.1)). To obtain the con dence interval for the tted cross sections, a pro le likelihood ratio s is built according to p( t) = p (1 + p) t ; where the nuisance parameters are denoted by . The quantities with single hats are their unconditional maximum-likelihood estimate, while the quantities with double hats are their conditional maximum-likelihood estimate when is xed. The pro le likelihood ratio is evaluated within the RooFit/RooStats framework [60, 61] and used to determine the upper and lower limits on the cross section at the 68% con dence level. In the t, events from the electron and muon channels are merged, having a common parameter of interest, i.e. the ducial cross section. For the di erential cross-section measurement, the ducial region de nition includes all the requirements for the total cross-section measurement. In addition, the true pT or of the photon has to be in the bin considered. The systematic uncertainties are treated as correlated between the bins. The size of the bins is chosen to keep the migration between bins lower than the expected statistical uncertainty of the cross-section measurement in that bin, in order to have only a small contribution from the bin-by-bin unfolding to the total uncertainty. The migration between bins is smaller than 7% for all bins. 8 Systematic uncertainties There are three categories of systematic uncertainty a ecting the results: the modelling uncertainties, the experimental uncertainties, and the uncertainties related to the template shapes. When varying the parameters to estimate uncertainties, only small di erences between the positive and negative uncertainties in the cross section are observed. The uncertainty is therefore symmetrised by taking the larger of the two values. The uncertainties for the inclusive and di erential measurements are derived in the same way. The uncertainties for the inclusive measurement are discussed in detail below and summarised in table 2. The uncertainties for the di erential measurements are included in table 3. 8.1 The renormalisation and factorisation scales for the simulation of the signal process are varied simultaneously from their nominal value of R = F = 2mtop by a factor of 1=2 or 2, resulting in an uncertainty of 0:6% in the measured cross section. Pythia 6, which is used for the nominal signal sample, is replaced by Herwig 6.520 [30] and Jimmy 4.31 [ 31 ] to estimate the uncertainty due to the modelling of the parton shower, underlying event, and hadronisation. This results in an uncertainty of 0:6% in the cross section. Initialand nal-state radiation are studied by using Pythia 6 tunes with high (Perugia2011C radHi) and low (Perugia2011C radLo) QCD radiation activity for the signal sample. This results in an uncertainty in the inclusive cross section of 2:2%. Other signal modelling uncertainties were studied, including the choice of matrixelement event generator [8], the PDF, and the e ect of colour reconnection, underlying event, and QED uncertainties, and are found to be negligible. The uncertainties in the Z +jets, single-top+ and diboson+ backgrounds are estimated using the 48% uncertainty in the normalisation of the samples in the four-jet bin from the Berends-Giele scaling [62]. For the Z +jets events, this is the largest uncertainty, resulting in an uncertainty of 2:8% in the inclusive cross-section measurement. For the single-top+ events the uncertainty is 1:2%, while for the diboson+ events the uncertainty is negligible. For W +jets events, the uncertainty in the scale factor used to normalise the sample (section 6.3), as well as the di erence between the predictions from Sherpa and Alpgen, is taken into account, resulting in a total uncertainty of 4:0%. The fake rate used to estimate the background from electrons misidenti ed as photons shows a dependence on the choice of range and function used in the t of the ee and e invariant mass distributions, resulting in a total systematic uncertainty of 6:1% in the measured inclusive cross section. 8.2 Experimental uncertainties Experimental uncertainties common to signal and background processes come mainly from the uncertainties associated with the event reconstruction, identi cation, and trigger e ciencies, momentum and energy scales, and momentum and energy resolutions of the jets, the photon, the lepton, and ETmiss. In addition, the uncertainties associated with the jet avour tagging, the integrated luminosity, and the pile-up simulation are considered. The largest uncertainty associated with jets arises from the jet energy scale (JES) [63], which is split into several independent categories. To determine the JES uncertainty, each source is varied independently, and the results added in quadrature to obtain an uncertainty in the inclusive cross section of 4:9%. The leading sources for the JES uncertainty are due to uncertainties in the modelling, the amount of pile-up, and the jet avour composition. The jet energy resolution is evaluated in a similar way [ 64 ] and results in a total uncertainty of 0:5%. The photon identi cation e ciency [46] is measured with samples of photons from the radiative decays of the Z boson, and electrons and positrons from Z boson decays, exploiting the similarity between electron and photon electromagnetic showers. Scale factors are used to correct for detector mismodelling. Uncertainties in these scale factors range between 1:5% and 2:5% (2% and 3%) for unconverted (converted) photons in the region of ET < 40 GeV, and 0:5% to 1% for higher transverse energies. These scale factors are varied to study their impact on the analysis, resulting in an uncertainty in the inclusive cross section of 1:2%. The photon energy scale uncertainty [48] contributes another 0:7% uncertainty to the measured inclusive cross section. For leptons, the trigger and identi cation e ciencies, and the energy scale and resolution have been investigated [ 42, 44, 64 ]. Correction factors that are applied to the simulation to better match the data are varied within their uncertainty, resulting in an uncertainty of 1:1% in the total cross-section measurement. The uncertainty in b-tagging [53] is accounted for by varying the calibration scale factors for b-jets, c-jets, and light- avour jets by their corresponding systematic uncertainties independently yielding a total systematic uncertainty of 0:3%. The contribution due to the ETmiss uncertainty is negligible. The uncertainty in the integrated luminosity is 1:9%, as determined from a calibration of the luminosity scale derived from beam-separation scans [40]. As the luminosity a ects both the signal and background normalisation the resulting uncertainty is 2:1%. Template-related uncertainties The dominant uncertainty in the hadron-fake template comes from the contamination by prompt photons. In order to take this contamination into account, a modi ed template is constructed, where the photon candidates are required not only to fail one of the photon identi cation requirements based on shower shapes, but all four of them (section 5.2). The likelihood t is then repeated using the modi ed template resulting in a systematic uncertainty in the inclusive cross section of 6:3%. The prompt-photon template is a ected by the modelling and experimental systematic uncertainties as described in sections 8.1 and 8.2. The largest uncertainty due to the template describing electrons misidenti ed as photons comes from a variation on the ETmiss requirement in the event selection. Other uncertainties are due to the variation of the mass range in the event selection and the pT ordering chosen in the determination of the electron fake rates. The combination of these e ects, together with the fake rate uncertainty introduced above, yields a systematics uncertainty of 6:3% on the cross section measurement. 9 Results A total of 3072 candidate events are observed in data. The result of the t in the ducial region for the inclusive cross section is summarised in table 3, together with the event yields of the backgrounds. No signi cant pull of the t input values and their uncertainties is observed compared to the post- t values. Also, the tted event yields for the di erential cross-section measurement are shown in each photon pT and bin. The post- t track isolation distribution for the inclusive measurement is shown in gure 3a. HJEP1(207)86 Source Hadron-fake template e ! fake Jet energy scale W Z +jets +jets Initial- and Luminosity Photon Single top+ Muon Electron nal-state radiation Scale uncertainty Parton shower Statistical uncertainty Total uncertainty Hadronic fake e ! fake 1060 e ects on the measurement of the inclusive cross section. In addition, the statistical and total uncertainty are given. The total uncertainty is derived from the likelihood t. Range Total 15 25 40 60 100 0:25 0:55 0:90 1:37 surement and for the di erent bins of reconstructed photon pT and for the di erential cross-section measurement. The uncertainties include the statistical and systematic uncertainties. NLO prediction based on PRD 83 (2011) 074013 stat total 1 (b) 1.5 ttγ σfid/σSM ttγ HJEP1(207)86 /eG104 ATLAS s = 8 TeV, 20.2 fb-1 Single lepton channel E 103 102 . 1.2 red 1.1 1 P / ta 0.9 aD0.80 ttγ s = 8 TeV 20.2 fb-1 This work s = 7 TeV 4.59 fb-1 PRD 91 (2015) 072007 2 4 6 last bin includes the over ow. The uncertainty band includes all uncertainties. (b) Summary of ducial measurements of tt production in pp collisions at 7 TeV [8] and 8 TeV, normalised to the expected cross section, calculated at NLO accuracy [9]. Using data selected in the single-lepton channel, the result of the inclusive measurement is: sld = 139 7 (stat.) 17 (syst.) fb = 139 18 fb; which agrees with the NLO prediction of 151 24 fb [9]. This result is compared to the Standard Model calculation as well as to the measurement performed at p s = 7 TeV [8] in gure 3b. Good agreement with the NLO predictions is observed in both cases. The measured pT and di erential cross sections are shown and compared with their corresponding theoretical predictions in gure 4. Good agreement is observed between the measurement and predicted values. 10 Conclusions A measurement of the ducial cross section of top-quark pair events in association with a photon, using 20:2 fb 1 of 8 TeV pp collision data collected in 2012 by the ATLAS detector at the LHC is presented. The measurement is performed in the single-lepton channel with either one isolated electron or muon, at least four jets where at least one is b-tagged ducial region pT( ) > 15 GeV, j ( )j < 2:37 and pT(`) > 25 GeV, j (`)j < 2:5, with angular separations R(`; ) > 0:7 and R(jet; ) > 0:5. The result is based on the minimisation of a pro le likelihood ratio, using the photon track isolation as the discriminating variable since it provides good rejection against the main background of hadronic { 18 { Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co- nanced by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [65]. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. 87 (2013) 074015 [arXiv:1212.6575] [INSPIRE]. (2015) 044 [arXiv:1501.05939] [INSPIRE]. [3] R. Rontsch and M. Schulze, Probing top-Z dipole moments at the LHC and ILC, JHEP 08 [4] M. Schulze and Y. Soreq, Pinning down electroweak dipole operators of the top quark, Eur. Phys. J. C 76 (2016) 466 [arXiv:1603.08911] [INSPIRE]. [5] O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model E ective Field Theory at NLO in QCD, JHEP 05 (2016) 052 [arXiv:1601.08193] [INSPIRE]. [6] P.-F. Duan, Y. Zhang, Y. Wang, M. Song and G. Li, Electroweak corrections to top quark pair production in association with a hard photon at hadron colliders, Phys. Lett. B 766 (2017) 102 [arXiv:1612.00248] [INSPIRE]. [7] CDF collaboration, T. Aaltonen et al., Evidence for tt production and measurement of tt = tt, Phys. Rev. D 84 (2011) 031104(R) [arXiv:1106.3970] [INSPIRE]. [8] ATLAS collaboration, Observation of top-quark pair production in association with a photon and measurement of the tt production cross section in pp collisions at p s = 7 TeV using the ATLAS detector, Phys. Rev. D 91 (2015) 072007 [arXiv:1502.00586] [INSPIRE]. HJEP1(207)86 JINST 3 S08003 [INSPIRE]. [9] K. Melnikov, M. Schulze and A. Scharf, QCD corrections to top quark pair production in association with a photon at hadron colliders, Phys. Rev. D 83 (2011) 074013 [10] ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE]. [12] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, [13] ATLAS collaboration, Summary of ATLAS PYTHIA 8 tunes, ATL-PHYS-PUB-2012-003 HJEP1(207)86 activity in pp collisions at p 2043 [arXiv:1203.5015] [INSPIRE]. [14] J. Alwall et al., The automated computation of tree-level and next-to-leading order di erential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [16] ATLAS collaboration, Measurement of tt production with a veto on additional central jet s = 7 TeV using the ATLAS detector, Eur. Phys. J. C 72 (2012) [17] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE]. 074018 [arXiv:1005.3457] [INSPIRE]. [19] E. Barberio and Z. Was, PHOTOS: A universal Monte Carlo for QED radiative corrections: version 2.0, Comput. Phys. Commun. 79 (1994) 291 [INSPIRE]. [20] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE]. [21] P. Golonka, B. Kersevan, T. Pierzchala, E. Richter-Was, Z. Was and M. Worek, The tauola-photos-F environment for the TAUOLA and PHOTOS packages, release II, Comput. Phys. Commun. 174 (2006) 818 [hep-ph/0312240] [INSPIRE]. [22] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE]. [23] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [24] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [25] S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 02 (2010) 011] [arXiv:0907.4076] [INSPIRE]. [26] E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE]. ATL-PHYS-PUB-2011-008 [INSPIRE]. 07 (2011) 018 [arXiv:1105.0020] [INSPIRE]. JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE]. [29] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a W or H , Phys. Rev. D 82 (2010) 054018 [arXiv:1005.4451] [INSPIRE]. [30] G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with HJEP1(207)86 interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE]. [34] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, [35] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. [36] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE]. [37] ATLAS collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70 (2010) 823 [arXiv:1005.4568] [INSPIRE]. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. [38] GEANT4 collaboration, S. Agostinelli et al., GEANT4 | a simulation toolkit, Nucl. [39] ATLAS collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim, ATL-PHYS-PUB-2010-013 [INSPIRE]. [40] ATLAS collaboration, Luminosity determination in pp collisions at p s = 8 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 653 [arXiv:1608.03953] [INSPIRE]. [41] ATLAS collaboration, Electron reconstruction and identi cation e ciency measurements with the ATLAS detector using the 2011 LHC proton-proton collision data, Eur. Phys. J. C 74 (2014) 2941 [arXiv:1404.2240] [INSPIRE]. [42] ATLAS collaboration, Electron e ciency measurements with the ATLAS detector using 2012 LHC proton-proton collision data, Eur. Phys. J. C 77 (2017) 195 [arXiv:1612.01456] [43] ATLAS collaboration, Muon reconstruction e ciency and momentum resolution of the ATLAS experiment in proton-proton collisions at p (2014) 3034 [arXiv:1404.4562] [INSPIRE]. s = 7 TeV in 2010, Eur. Phys. J. C 74 [44] ATLAS collaboration, Measurement of the muon reconstruction performance of the ATLAS 3130 [arXiv:1407.3935] [INSPIRE]. cient identi cation of boosted semileptonic top quarks at the LHC, JHEP 03 (2011) 059 [arXiv:1007.2221] [INSPIRE]. [46] ATLAS collaboration, Measurement of the photon identi cation e ciencies with the ATLAS using LHC Run 1 data, Eur. Phys. J. C 74 (2014) 3071 [arXiv:1407.5063] [INSPIRE]. 063 [arXiv:0802.1189] [INSPIRE]. collisions at p at p [arXiv:1510.03823] [INSPIRE]. [50] ATLAS collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, Eur. Phys. J. C 77 (2017) 490 [arXiv:1603.02934] [INSPIRE]. [51] ATLAS collaboration, Jet energy measurement with the ATLAS detector in proton-proton s = 7 TeV, Eur. Phys. J. C 73 (2013) 2304 [arXiv:1112.6426] [INSPIRE]. [52] ATLAS collaboration, Performance of pile-up mitigation techniques for jets in pp collisions s = 8 TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 581 [53] ATLAS collaboration, Performance of b-Jet Identi cation in the ATLAS Experiment, 2016 JINST 11 P04008 [arXiv:1512.01094] [INSPIRE]. in the 2012 ATLAS data, ATLAS-CONF-2014-046 [INSPIRE]. [54] ATLAS collaboration, Calibration of the performance of b-tagging for c and light- avour jets [55] ATLAS collaboration, Calibration of b-tagging using dileptonic top pair events in a combinatorial likelihood approach with the ATLAS experiment, ATLAS-CONF-2014-004 momentum in p 77 (2017) 241 [arXiv:1609.09324] [INSPIRE]. ATLAS in pp collisions at p [56] ATLAS collaboration, Performance of algorithms that reconstruct missing transverse s = 8 TeV proton-proton collisions in the ATLAS detector, Eur. Phys. J. C [57] ATLAS collaboration, Measurement of the top quark-pair production cross section with s = 7 TeV, Eur. Phys. J. C 71 (2011) 1577 [arXiv:1012.1792] [58] M.J. Oreglia, A study of the reactions 0 ! , SLAC-R-236 [INSPIRE]. [59] P.-F. Duan, W.-G. Ma, R.-Y. Zhang, L. Han, L. Guo and S.-M. Wang, QCD corrections to associated production of tt at hadron colliders, Phys. Rev. D 80 (2009) 014022 [arXiv:0907.1324] [INSPIRE]. [60] W. Verkerke and D. Kirkby, The RooFit toolkit for data modeling, [physics/0306116] [61] L. Moneta et al., The RooStats Project, PoS(ACAT2010)057 [arXiv:1009.1003] [INSPIRE]. proton-proton collisions at p 17 [arXiv:1406.0076] [INSPIRE]. [63] ATLAS collaboration, Jet energy measurement and its systematic uncertainty in [arXiv:1210.6210] [INSPIRE]. ATL-GEN-PUB-2016-002 (2016). HJEP1(207)86 M. Aaboud137d, G. Aad88, B. Abbott115, O. Abdinov12; , B. Abeloos119, S.H. Abidi161, O.S. AbouZeid139, N.L. Abraham151, H. Abramowicz155, H. Abreu154, R. Abreu118, Y. Abulaiti148a;148b, B.S. Acharya167a;167b;a, S. Adachi157, L. Adamczyk41a, J. Adelman110, M. Adersberger102, T. Adye133, A.A. A older139, T. Agatonovic-Jovin14, C. Agheorghiesei28c, J.A. Aguilar-Saavedra128a;128f, S.P. Ahlen24, F. Ahmadov68;b, G. Aielli135a;135b, S. Akatsuka71, H. Akerstedt148a;148b, T.P.A. Akesson84, E. Akilli52, A.V. Akimov98, G.L. Alberghi22a;22b, J. Albert172, P. Albicocco50, M.J. Alconada Verzini74, S.C. Alderweireldt108, M. Aleksa32, I.N. Aleksandrov68, C. Alexa28b, G. Alexander155, T. Alexopoulos10, M. Alhroob115, B. Ali130, M. Aliev76a;76b, G. Alimonti94a, J. Alison33, S.P. Alkire38, B.M.M. Allbrooke151, B.W. Allen118, P.P. Allport19, A. Aloisio106a;106b, A. Alonso39, F. Alonso74, C. Alpigiani140, A.A. Alshehri56, M.I. Alstaty88, B. Alvarez Gonzalez32, D. Alvarez Piqueras170, M.G. Alviggi106a;106b, B.T. Amadio16, Y. Amaral Coutinho26a, C. Amelung25, D. Amidei92, S.P. Amor Dos Santos128a;128c, A. Amorim128a;128b, S. Amoroso32, G. Amundsen25, C. Anastopoulos141, L.S. Ancu52, N. Andari19, T. Andeen11, C.F. Anders60b, J.K. Anders77, K.J. Anderson33, A. Andreazza94a;94b, V. Andrei60a, S. Angelidakis9, I. Angelozzi109, A. Angerami38, A.V. Anisenkov111;c, N. Anjos13, A. Annovi126a;126b, C. Antel60a, M. Antonelli50, A. Antonov100; , D.J. Antrim166, F. Anulli134a, M. Aoki69, L. Aperio Bella32, G. Arabidze93, Y. Arai69, J.P. Araque128a, V. Araujo Ferraz26a, A.T.H. Arce48, R.E. Ardell80, F.A. Arduh74, J-F. Arguin97, S. Argyropoulos66, M. Arik20a, A.J. Armbruster32, L.J. Armitage79, O. Arnaez161, H. Arnold51, M. Arratia30, O. Arslan23, A. Artamonov99, G. Artoni122, S. Artz86, S. Asai157, N. Asbah45, A. Ashkenazi155, L. Asquith151, K. Assamagan27, R. Astalos146a, M. Atkinson169, N.B. Atlay143, K. Augsten130, G. Avolio32, B. Axen16, M.K. Ayoub119, G. Azuelos97;d, A.E. Baas60a, M.J. Baca19, H. Bachacou138, K. Bachas76a;76b, M. Backes122, M. Backhaus32, P. Bagnaia134a;134b, M. Bahmani42, H. Bahrasemani144, J.T. Baines133, M. Bajic39, O.K. Baker179, E.M. Baldin111;c, P. Balek175, F. Balli138, W.K. Balunas124, E. Banas42, A. Bandyopadhyay23, Sw. Banerjee176;e, A.A.E. Bannoura178, L. Barak32, E.L. Barberio91, D. Barberis53a;53b, M. Barbero88, T. Barillari103, M-S Barisits32, J.T. Barkeloo118, T. Barklow145, N. Barlow30, S.L. Barnes36c, B.M. Barnett133, R.M. Barnett16, Z. Barnovska-Blenessy36a, A. Baroncelli136a, G. Barone25, A.J. Barr122, L. Barranco Navarro170, F. Barreiro85, J. Barreiro Guimar~aes da Costa35a, R. Bartoldus145, A.E. Barton75, P. Bartos146a, A. Basalaev125, A. Bassalat119;f, R.L. Bates56, S.J. Batista161, J.R. Batley30, M. Battaglia139, M. Bauce134a;134b, F. Bauer138, H.S. Bawa145;g, J.B. Beacham113, M.D. Beattie75, T. Beau83, P.H. Beauchemin165, P. Bechtle23, H.P. Beck18;h, H.C. Beck57, K. Becker122, M. Becker86, M. Beckingham173, C. Becot112, A.J. Beddall20e, A. Beddall20b, V.A. Bednyakov68, M. Bedognetti109, C.P. Bee150, T.A. Beermann32, M. Begalli26a, M. Begel27, J.K. Behr45, A.S. Bell81, G. Bella155, L. Bellagamba22a, A. Bellerive31, M. Bellomo154, K. Belotskiy100, O. Beltramello32, N.L. Belyaev100, O. Benary155; , D. Benchekroun137a, M. Bender102, K. Bendtz148a;148b, N. Benekos10, Y. Benhammou155, E. Benhar Noccioli179, J. Benitez66, D.P. Benjamin48, M. Benoit52, J.R. Bensinger25, S. Bentvelsen109, L. Beresford122, M. Beretta50, D. Berge109, E. Bergeaas Kuutmann168, N. Berger5, J. Beringer16, S. Berlendis58, N.R. Bernard89, G. Bernardi83, C. Bernius145, F.U. Bernlochner23, T. Berry80, P. Berta131, C. Bertella35a, G. Bertoli148a;148b, F. Bertolucci126a;126b, I.A. Bertram75, C. Bertsche45, D. Bertsche115, G.J. Besjes39, O. Bessidskaia Bylund148a;148b, M. Bessner45, N. Besson138, C. Betancourt51, A. Bethani87, S. Bethke103, A.J. Bevan79, J. Beyer103, R.M. Bianchi127, O. Biebel102, D. Biedermann17, R. Bielski87, K. Bierwagen86, N.V. Biesuz126a;126b, M. Biglietti136a, T.R.V. Billoud97, H. Bilokon50, M. Bindi57, A. Bingul20b, C. Bini134a;134b, S. Biondi22a;22b, HJEP1(207)86 R.E. Blair6, T. Blazek146a, I. Bloch45, C. Blocker25, A. Blue56, W. Blum86; , U. Blumenschein79, S. Blunier34a, G.J. Bobbink109, V.S. Bobrovnikov111;c, S.S. Bocchetta84, A. Bocci48, C. Bock102, M. Boehler51, D. Boerner178, D. Bogavac102, A.G. Bogdanchikov111, C. Bohm148a, V. Boisvert80, P. Bokan168;i, T. Bold41a, A.S. Boldyrev101, A.E. Bolz60b, M. Bomben83, M. Bona79, M. Boonekamp138, A. Borisov132, G. Borissov75, J. Bortfeldt32, D. Bortoletto122, V. Bortolotto62a;62b;62c, D. Boscherini22a, M. Bosman13, J.D. Bossio Sola29, J. Boudreau127, J. Bou ard2, E.V. Bouhova-Thacker75, D. Boumediene37, C. Bourdarios119, S.K. Boutle56, A. Boveia113, J. Boyd32, I.R. Boyko68, J. Bracinik19, A. Brandt8, G. Brandt57, O. Brandt60a, U. Bratzler158, B. Brau89, J.E. Brau118, W.D. Breaden Madden56, K. Brendlinger45, A.J. Brennan91, L. Brenner109, R. Brenner168, S. Bressler175, D.L. Briglin19, T.M. Bristow49, D. Britton56, D. Britzger45, F.M. Brochu30, I. Brock23, R. Brock93, G. Brooijmans38, T. Brooks80, W.K. Brooks34b, J. Brosamer16, E. Brost110, J.H Broughton19, P.A. Bruckman de Renstrom42, D. Bruncko146b, A. Bruni22a, G. Bruni22a, L.S. Bruni109, BH Brunt30, M. Bruschi22a, N. Bruscino23, P. Bryant33, L. Bryngemark45, T. Buanes15, Q. Buat144, P. Buchholz143, A.G. Buckley56, I.A. Budagov68, F. Buehrer51, M.K. Bugge121, O. Bulekov100, D. Bullock8, T.J. Burch110, S. Burdin77, C.D. Burgard51, A.M. Burger5, B. Burghgrave110, K. Burka42, S. Burke133, I. Burmeister46, J.T.P. Burr122, E. Busato37, D. Buscher51, V. Buscher86, P. Bussey56, J.M. Butler24, C.M. Buttar56, J.M. Butterworth81, P. Butti32, W. Buttinger27, A. Buzatu35c, A.R. Buzykaev111;c, S. Cabrera Urban170, D. Caforio130, V.M. Cairo40a;40b, O. Cakir4a, N. Calace52, P. Cala ura16, A. Calandri88, G. Calderini83, P. Calfayan64, G. Callea40a;40b, L.P. Caloba26a, S. Calvente Lopez85, D. Calvet37, S. Calvet37, T.P. Calvet88, R. Camacho Toro33, S. Camarda32, P. Camarri135a;135b, D. Cameron121, R. Caminal Armadans169, C. Camincher58, S. Campana32, M. Campanelli81, A. Camplani94a;94b, A. Campoverde143, V. Canale106a;106b, M. Cano Bret36c, J. Cantero116, T. Cao155, M.D.M. Capeans Garrido32, I. Caprini28b, M. Caprini28b, M. Capua40a;40b, R.M. Carbone38, R. Cardarelli135a, F. Cardillo51, I. Carli131, T. Carli32, G. Carlino106a, B.T. Carlson127, L. Carminati94a;94b, R.M.D. Carney148a;148b, S. Caron108, E. Carquin34b, S. Carra94a;94b, G.D. Carrillo-Montoya32, J. Carvalho128a;128c, D. Casadei19, M.P. Casado13;j, M. Casolino13, D.W. Casper166, R. Castelijn109, V. Castillo Gimenez170, N.F. Castro128a;k, A. Catinaccio32, J.R. Catmore121, A. Cattai32, J. Caudron23, V. Cavaliere169, E. Cavallaro13, D. Cavalli94a, M. Cavalli-Sforza13, V. Cavasinni126a;126b, E. Celebi20a, F. Ceradini136a;136b, L. Cerda Alberich170, A.S. Cerqueira26b, A. Cerri151, L. Cerrito135a;135b, F. Cerutti16, A. Cervelli18, S.A. Cetin20d, A. Chafaq137a, D. Chakraborty110, S.K. Chan59, W.S. Chan109, Y.L. Chan62a, P. Chang169, J.D. Chapman30, D.G. Charlton19, C.C. Chau161, C.A. Chavez Barajas151, S. Che113, S. Cheatham167a;167c, A. Chegwidden93, S. Chekanov6, S.V. Chekulaev163a, G.A. Chelkov68;l, M.A. Chelstowska32, C. Chen67, H. Chen27, J. Chen36a, S. Chen35b, S. Chen157, X. Chen35c;m, Y. Chen70, H.C. Cheng92, H.J. Cheng35a, A. Cheplakov68, E. Cheremushkina132, R. Cherkaoui El Moursli137e, E. Cheu7, K. Cheung63, L. Chevalier138, V. Chiarella50, G. Chiarelli126a;126b, G. Chiodini76a, A.S. Chisholm32, A. Chitan28b, Y.H. Chiu172, M.V. Chizhov68, K. Choi64, A.R. Chomont37, S. Chouridou156, V. Christodoulou81, D. Chromek-Burckhart32, M.C. Chu62a, J. Chudoba129, A.J. Chuinard90, J.J. Chwastowski42, L. Chytka117, A.K. Ciftci4a, D. Cinca46, V. Cindro78, I.A. Cioara23, C. Ciocca22a;22b, A. Ciocio16, F. Cirotto106a;106b, Z.H. Citron175, M. Citterio94a, M. Ciubancan28b, A. Clark52, B.L. Clark59, M.R. Clark38, P.J. Clark49, R.N. Clarke16, C. Clement148a;148b, Y. Coadou88, M. Cobal167a;167c, A. Coccaro52, J. Cochran67, L. Colasurdo108, B. Cole38, A.P. Colijn109, J. Collot58, T. Colombo166, P. Conde Muin~o128a;128b, E. Coniavitis51, S.H. Connell147b, I.A. Connelly87, S. Constantinescu28b, G. Conti32, F. Conventi106a;n, M. Cooke16, A.M. Cooper-Sarkar122, HJEP1(207)86 G. Cortiana103, G. Costa94a, M.J. Costa170, D. Costanzo141, G. Cottin30, G. Cowan80, A. De Salvo134a, U. De Sanctis135a;135b, A. De Santo151, K. De Vasconcelos Corga88, J.B. De Vivie De Regie119, W.J. Dearnaley75, R. Debbe27, C. Debenedetti139, D.V. Dedovich68, N. Dehghanian3, I. Deigaard109, M. Del Gaudio40a;40b, J. Del Peso85, D. Delgove119, F. Deliot138, C.M. Delitzsch7, A. Dell'Acqua32, L. Dell'Asta24, M. Dell'Orso126a;126b, M. Della Pietra106a;106b, D. della Volpe52, M. Delmastro5, C. Delporte119, P.A. Delsart58, D.A. DeMarco161, S. Demers179, M. Demichev68, A. Demilly83, S.P. Denisov132, D. Denysiuk138, D. Derendarz42, J.E. Derkaoui137d, F. Derue83, P. Dervan77, K. Desch23, C. Deterre45, K. Dette46, M.R. Devesa29, P.O. Deviveiros32, A. Dewhurst133, S. Dhaliwal25, F.A. Di Bello52, A. Di Ciaccio135a;135b, L. Di Ciaccio5, W.K. Di Clemente124, C. Di Donato106a;106b, A. Di Girolamo32, B. Di Girolamo32, B. Di Micco136a;136b, R. Di Nardo32, K.F. Di Petrillo59, A. Di Simone51, R. Di Sipio161, D. Di Valentino31, C. Diaconu88, M. Diamond161, F.A. Dias39, M.A. Diaz34a, E.B. Diehl92, J. Dietrich17, S. D ez Cornell45, A. Dimitrievska14, J. Dingfelder23, P. Dita28b, S. Dita28b, F. Dittus32, F. Djama88, T. Djobava54b, J.I. Djuvsland60a, M.A.B. do Vale26c, D. Dobos32, M. Dobre28b, C. Doglioni84, J. Dolejsi131, Z. Dolezal131, M. Donadelli26d, S. Donati126a;126b, P. Dondero123a;123b, J. Donini37, J. Dopke133, A. Doria106a, M.T. Dova74, A.T. Doyle56, E. Drechsler57, M. Dris10, Y. Du36b, J. Duarte-Campderros155, A. Dubreuil52, E. Duchovni175, G. Duckeck102, A. Ducourthial83, O.A. Ducu97;p, D. Duda109, A. Dudarev32, A.Chr. Dudder86, E.M. Du eld16, L. Du ot119, M. Duhrssen32, M. Dumancic175, A.E. Dumitriu28b, A.K. Duncan56, M. Dunford60a, H. Duran Yildiz4a, M. Duren55, A. Durglishvili54b, D. Duschinger47, B. Dutta45, M. Dyndal45, B.S. Dziedzic42, C. Eckardt45, K.M. Ecker103, R.C. Edgar92, T. Eifert32, G. Eigen15, K. Einsweiler16, T. Ekelof168, M. El Kacimi137c, R. El Kossei 88, V. Ellajosyula88, M. Ellert168, S. Elles5, F. Ellinghaus178, A.A. Elliot172, N. Ellis32, J. Elmsheuser27, M. Elsing32, D. Emeliyanov133, Y. Enari157, O.C. Endner86, J.S. Ennis173, J. Erdmann46, A. Ereditato18, M. Ernst27, S. Errede169, M. Escalier119, C. Escobar170, B. Esposito50, O. Estrada Pastor170, A.I. Etienvre138, E. Etzion155, H. Evans64, A. Ezhilov125, M. Ezzi137e, F. Fabbri22a;22b, L. Fabbri22a;22b, V. Fabiani108, G. Facini81, R.M. Fakhrutdinov132, S. Falciano134a, R.J. Falla81, J. Faltova32, Y. Fang35a, M. Fanti94a;94b, A. Farbin8, A. Farilla136a, C. Farina127, E.M. Farina123a;123b, T. Farooque93, S. Farrell16, S.M. Farrington173, P. Farthouat32, F. Fassi137e, P. Fassnacht32, D. Fassouliotis9, M. Faucci Giannelli80, A. Favareto53a;53b, W.J. Fawcett122, L. Fayard119, O.L. Fedin125;q, W. Fedorko171, S. Feigl121, L. Feligioni88, C. Feng36b, E.J. Feng32, H. Feng92, M.J. Fenton56, A.B. Fenyuk132, L. Feremenga8, P. Fernandez Martinez170, S. Fernandez Perez13, J. Ferrando45, A. Ferrari168, P. Ferrari109, R. Ferrari123a, D.E. Ferreira de Lima60b, A. Ferrer170, D. Ferrere52, C. Ferretti92, F. Fiedler86, A. Filipcic78, M. Filipuzzi45, F. Filthaut108, M. Fincke-Keeler172, K.D. Finelli152, M.C.N. Fiolhais128a;128c;r, L. Fiorini170, A. Fischer2, C. Fischer13, J. Fischer178, W.C. Fisher93, N. Flaschel45, I. Fleck143, HJEP1(207)86 M.J. Flowerdew103, G.T. Forcolin87, A. Formica138, F.A. Forster13, A. Forti87, A.G. Foster19, D. Fournier119, H. Fox75, S. Fracchia141, P. Francavilla83, M. Franchini22a;22b, S. Franchino60a, D. Francis32, L. Franconi121, M. Franklin59, M. Frate166, M. Fraternali123a;123b, D. Freeborn81, S.M. Fressard-Batraneanu32, B. Freund97, D. Froidevaux32, J.A. Frost122, C. Fukunaga158, T. Fusayasu104, J. Fuster170, C. Gabaldon58, O. Gabizon154, A. Gabrielli22a;22b, A. Gabrielli16, G.P. Gach41a, S. Gadatsch32, S. Gadomski80, G. Gagliardi53a;53b, L.G. Gagnon97, C. Galea108, B. Galhardo128a;128c, E.J. Gallas122, B.J. Gallop133, P. Gallus130, G. Galster39, K.K. Gan113, S. Ganguly37, Y. Gao77, Y.S. Gao145;g, F.M. Garay Walls49, C. Garc a170, J.E. Garc a Navarro170, J.A. Garc a Pascual35a, M. Garcia-Sciveres16, R.W. Gardner33, N. Garelli145, V. Garonne121, A. Gascon Bravo45, K. Gasnikova45, C. Gatti50, A. Gaudiello53a;53b, G. Gaudio123a, I.L. Gavrilenko98, C. Gay171, G. Gaycken23, E.N. Gazis10, C.N.P. Gee133, J. Geisen57, M. Geisen86, M.P. Geisler60a, K. Gellerstedt148a;148b, C. Gemme53a, M.H. Genest58, C. Geng92, S. Gentile134a;134b, C. Gentsos156, S. George80, D. Gerbaudo13, A. Gershon155, G. Ge ner46, S. Ghasemi143, M. Ghneimat23, B. Giacobbe22a, S. Giagu134a;134b, N. Giangiacomi22a;22b, P. Giannetti126a;126b, S.M. Gibson80, M. Gignac171, M. Gilchriese16, D. Gillberg31, G. Gilles178, D.M. Gingrich3;d, N. Giokaris9; , M.P. Giordani167a;167c, F.M. Giorgi22a, P.F. Giraud138, P. Giromini59, G. Giugliarelli167a;167c, D. Giugni94a, F. Giuli122, C. Giuliani103, M. Giulini60b, B.K. Gjelsten121, S. Gkaitatzis156, I. Gkialas9;s, E.L. Gkougkousis139, P. Gkountoumis10, L.K. Gladilin101, C. Glasman85, J. Glatzer13, P.C.F. Glaysher45, A. Glazov45, M. Goblirsch-Kolb25, J. Godlewski42, S. Goldfarb91, T. Golling52, D. Golubkov132, A. Gomes128a;128b;128d, R. Goncalo128a, R. Goncalves Gama26a, J. Goncalves Pinto Firmino Da Costa138, G. Gonella51, L. Gonella19, A. Gongadze68, S. Gonzalez de la Hoz170, S. Gonzalez-Sevilla52, L. Goossens32, P.A. Gorbounov99, H.A. Gordon27, I. Gorelov107, B. Gorini32, E. Gorini76a;76b, A. Gorisek78, A.T. Goshaw48, C. Gossling46, M.I. Gostkin68, C.A. Gottardo23, C.R. Goudet119, D. Goujdami137c, A.G. Goussiou140, N. Govender147b;t, E. Gozani154, L. Graber57, I. Grabowska-Bold41a, P.O.J. Gradin168, J. Gramling166, E. Gramstad121, S. Grancagnolo17, V. Gratchev125, P.M. Gravila28f, C. Gray56, H.M. Gray16, Z.D. Greenwood82;u, C. Grefe23, K. Gregersen81, I.M. Gregor45, P. Grenier145, K. Grevtsov5, J. Gri ths8, A.A. Grillo139, K. Grimm75, S. Grinstein13;v, Ph. Gris37, J.-F. Grivaz119, S. Groh86, E. Gross175, J. Grosse-Knetter57, G.C. Grossi82, Z.J. Grout81, A. Grummer107, L. Guan92, W. Guan176, J. Guenther65, F. Guescini163a, D. Guest166, O. Gueta155, B. Gui113, E. Guido53a;53b, T. Guillemin5, S. Guindon2, U. Gul56, C. Gumpert32, J. Guo36c, W. Guo92, Y. Guo36a, R. Gupta43, S. Gupta122, G. Gustavino134a;134b, P. Gutierrez115, N.G. Gutierrez Ortiz81, C. Gutschow81, C. Guyot138, M.P. Guzik41a, C. Gwenlan122, C.B. Gwilliam77, A. Haas112, C. Haber16, H.K. Hadavand8, N. Haddad137e, A. Hadef88, S. Hagebock23, M. Hagihara164, H. Hakobyan180; , M. Haleem45, J. Haley116, G. Halladjian93, G.D. Hallewell88, K. Hamacher178, P. Hamal117, K. Hamano172, A. Hamilton147a, G.N. Hamity141, P.G. Hamnett45, L. Han36a, S. Han35a, K. Hanagaki69;w, K. Hanawa157, M. Hance139, B. Haney124, P. Hanke60a, J.B. Hansen39, J.D. Hansen39, M.C. Hansen23, P.H. Hansen39, K. Hara164, A.S. Hard176, T. Harenberg178, F. Hariri119, S. Harkusha95, R.D. Harrington49, P.F. Harrison173, N.M. Hartmann102, M. Hasegawa70, Y. Hasegawa142, A. Hasib49, S. Hassani138, S. Haug18, R. Hauser93, L. Hauswald47, L.B. Havener38, M. Havranek130, C.M. Hawkes19, R.J. Hawkings32, D. Hayakawa159, D. Hayden93, C.P. Hays122, J.M. Hays79, H.S. Hayward77, S.J. Haywood133, S.J. Head19, T. Heck86, V. Hedberg84, L. Heelan8, S. Heer23, K.K. Heidegger51, S. Heim45, T. Heim16, B. Heinemann45;x, J.J. Heinrich102, L. Heinrich112, C. Heinz55, J. Hejbal129, L. Helary32, A. Held171, S. Hellman148a;148b, C. Helsens32, R.C.W. Henderson75, Y. Heng176, S. Henkelmann171, A.M. Henriques Correia32, S. Henrot-Versille119, G.H. Herbert17, HJEP1(207)86 L. Hervas32, T.C. Herwig124, G.G. Hesketh81, N.P. Hessey163a, J.W. Hetherly43, S. Higashino69, E. Higon-Rodriguez170, K. Hildebrand33, E. Hill172, J.C. Hill30, K.H. Hiller45, S.J. Hillier19, M. Hils47, I. Hinchli e16, M. Hirose51, D. Hirschbuehl178, B. Hiti78, O. Hladik129, X. Hoad49, J. Hobbs150, N. Hod163a, M.C. Hodgkinson141, P. Hodgson141, A. Hoecker32, M.R. Hoeferkamp107, F. Hoenig102, D. Hohn23, T.R. Holmes33, M. Homann46, S. Honda164, T. Honda69, T.M. Hong127, B.H. Hooberman169, W.H. Hopkins118, Y. Horii105, A.J. Horton144, J-Y. Hostachy58, S. Hou153, A. Hoummada137a, J. Howarth87, J. Hoya74, M. Hrabovsky117, J. Hrdinka32, I. Hristova17, J. Hrivnac119, T. Hryn'ova5, A. Hrynevich96, P.J. Hsu63, S.-C. Hsu140, Q. Hu36a, S. Hu36c, Y. Huang35a, Z. Hubacek130, F. Hubaut88, F. Huegging23, T.B. Hu man122, E.W. Hughes38, G. Hughes75, M. Huhtinen32, P. Huo150, N. Huseynov68;b, J. Huston93, J. Huth59, G. Iacobucci52, G. Iakovidis27, I. Ibragimov143, L. Iconomidou-Fayard119, Z. Idrissi137e, P. Iengo32, O. Igonkina109;y, T. Iizawa174, Y. Ikegami69, M. Ikeno69, Y. Ilchenko11;z, D. Iliadis156, N. Ilic145, G. Introzzi123a;123b, P. Ioannou9; , M. Iodice136a, K. Iordanidou38, V. Ippolito59, M.F. Isacson168, N. Ishijima120, M. Ishino157, M. Ishitsuka159, C. Issever122, S. Istin20a, F. Ito164, J.M. Iturbe Ponce62a, R. Iuppa162a;162b, H. Iwasaki69, J.M. Izen44, V. Izzo106a, S. Jabbar3, P. Jackson1, R.M. Jacobs23, V. Jain2, K.B. Jakobi86, K. Jakobs51, S. Jakobsen65, T. Jakoubek129, D.O. Jamin116, D.K. Jana82, R. Jansky52, J. Janssen23, M. Janus57, P.A. Janus41a, G. Jarlskog84, N. Javadov68;b, T. Javurek51, M. Javurkova51, F. Jeanneau138, L. Jeanty16, J. Jejelava54a;aa, A. Jelinskas173, P. Jenni51;ab, C. Jeske173, S. Jezequel5, H. Ji176, J. Jia150, H. Jiang67, Y. Jiang36a, Z. Jiang145, S. Jiggins81, J. Jimenez Pena170, S. Jin35a, A. Jinaru28b, O. Jinnouchi159, H. Jivan147c, P. Johansson141, K.A. Johns7, C.A. Johnson64, W.J. Johnson140, K. Jon-And148a;148b, R.W.L. Jones75, S.D. Jones151, S. Jones7, T.J. Jones77, J. Jongmanns60a, P.M. Jorge128a;128b, J. Jovicevic163a, X. Ju176, A. Juste Rozas13;v, M.K. Kohler175, A. Kaczmarska42, M. Kado119, H. Kagan113, M. Kagan145, S.J. Kahn88, T. Kaji174, E. Kajomovitz48, C.W. Kalderon84, A. Kaluza86, S. Kama43, A. Kamenshchikov132, N. Kanaya157, L. Kanjir78, V.A. Kantserov100, J. Kanzaki69, B. Kaplan112, L.S. Kaplan176, D. Kar147c, K. Karakostas10, N. Karastathis10, M.J. Kareem57, E. Karentzos10, S.N. Karpov68, Z.M. Karpova68, K. Karthik112, V. Kartvelishvili75, A.N. Karyukhin132, K. Kasahara164, L. Kashif176, R.D. Kass113, A. Kastanas149, Y. Kataoka157, C. Kato157, A. Katre52, J. Katzy45, K. Kawade70, K. Kawagoe73, T. Kawamoto157, G. Kawamura57, E.F. Kay77, V.F. Kazanin111;c, R. Keeler172, R. Kehoe43, J.S. Keller31, J.J. Kempster80, J Kendrick19, H. Keoshkerian161, O. Kepka129, B.P. Kersevan78, S. Kersten178, R.A. Keyes90, M. Khader169, F. Khalil-zada12, A. Khanov116, A.G. Kharlamov111;c, T. Kharlamova111;c, A. Khodinov160, T.J. Khoo52, V. Khovanskiy99; , E. Khramov68, J. Khubua54b;ac, S. Kido70, C.R. Kilby80, H.Y. Kim8, S.H. Kim164, Y.K. Kim33, N. Kimura156, O.M. Kind17, B.T. King77, D. Kirchmeier47, J. Kirk133, A.E. Kiryunin103, T. Kishimoto157, D. Kisielewska41a, V. Kitali45, K. Kiuchi164, O. Kivernyk5, E. Kladiva146b, T. Klapdor-Kleingrothaus51, M.H. Klein38, M. Klein77, U. Klein77, K. Kleinknecht86, P. Klimek110, A. Klimentov27, R. Klingenberg46, T. Klingl23, T. Klioutchnikova32, E.-E. Kluge60a, P. Kluit109, S. Kluth103, E. Kneringer65, E.B.F.G. Knoops88, A. Knue103, A. Kobayashi157, D. Kobayashi159, T. Kobayashi157, M. Kobel47, M. Kocian145, P. Kodys131, T. Ko as31, E. Ko eman109, N.M. Kohler103, T. Koi145, M. Kolb60b, I. Koletsou5, A.A. Komar98; , Y. Komori157, T. Kondo69, N. Kondrashova36c, K. Koneke51, A.C. Konig108, T. Kono69;ad, R. Konoplich112;ae, N. Konstantinidis81, R. Kopeliansky64, S. Koperny41a, A.K. Kopp51, K. Korcyl42, K. Kordas156, A. Korn81, A.A. Korol111;c, I. Korolkov13, E.V. Korolkova141, O. Kortner103, S. Kortner103, T. Kosek131, V.V. Kostyukhin23, A. Kotwal48, A. Koulouris10, A. Kourkoumeli-Charalampidi123a;123b, C. Kourkoumelis9, E. Kourlitis141, V. Kouskoura27, A.B. Kowalewska42, R. Kowalewski172, T.Z. Kowalski41a, C. Kozakai157, W. Kozanecki138, A.S. Kozhin132, V.A. Kramarenko101, G. Kramberger78, D. Krasnopevtsev100, M.W. Krasny83, A. Krasznahorkay32, D. Krauss103, J.A. Kremer41a, J. Kretzschmar77, K. Kreutzfeldt55, P. Krieger161, K. Krizka33, K. Kroeninger46, H. Kroha103, J. Kroll129, J. Kroll124, J. Kroseberg23, J. Krstic14, U. Kruchonak68, H. Kruger23, N. Krumnack67, M.C. Kruse48, T. Kubota91, H. Kucuk81, S. Kuday4b, J.T. Kuechler178, S. Kuehn32, A. Kugel60a, F. Kuger177, T. Kuhl45, V. Kukhtin68, R. Kukla88, Y. Kulchitsky95, S. Kuleshov34b, Y.P. Kulinich169, M. Kuna134a;134b, T. Kunigo71, A. Kupco129, T. Kupfer46, O. Kuprash155, H. Kurashige70, L.L. Kurchaninov163a, Y.A. Kurochkin95, M.G. Kurth35a, V. Kus129, E.S. Kuwertz172, M. Kuze159, J. Kvita117, T. Kwan172, D. Kyriazopoulos141, A. La Rosa103, J.L. La Rosa Navarro26d, L. La Rotonda40a;40b, F. La Ru a40a;40b, C. Lacasta170, F. Lacava134a;134b, J. Lacey45, H. Lacker17, D. Lacour83, E. Ladygin68, R. Lafaye5, B. Laforge83, T. Lagouri179, S. Lai57, S. Lammers64, W. Lampl7, E. Lancon27, U. Landgraf51, M.P.J. Landon79, M.C. Lanfermann52, V.S. Lang60a, J.C. Lange13, R.J. Langenberg32, A.J. Lankford166, F. Lanni27, K. Lantzsch23, A. Lanza123a, A. Lapertosa53a;53b, S. Laplace83, J.F. Laporte138, T. Lari94a, F. Lasagni Manghi22a;22b, M. Lassnig32, P. Laurelli50, W. Lavrijsen16, A.T. Law139, P. Laycock77, T. Lazovich59, M. Lazzaroni94a;94b, B. Le91, O. Le Dortz83, E. Le Guirriec88, E.P. Le Quilleuc138, M. LeBlanc172, T. LeCompte6, F. Ledroit-Guillon58, C.A. Lee27, G.R. Lee133;af, S.C. Lee153, L. Lee59, B. Lefebvre90, G. Lefebvre83, M. Lefebvre172, F. Legger102, C. Leggett16, G. Lehmann Miotto32, X. Lei7, W.A. Leight45, M.A.L. Leite26d, R. Leitner131, D. Lellouch175, B. Lemmer57, K.J.C. Leney81, T. Lenz23, B. Lenzi32, R. Leone7, S. Leone126a;126b, C. Leonidopoulos49, G. Lerner151, C. Leroy97, A.A.J. Lesage138, C.G. Lester30, M. Levchenko125, J. Lev^eque5, D. Levin92, L.J. Levinson175, M. Levy19, D. Lewis79, B. Li36a;ag, Changqiao Li36a, H. Li150, L. Li36c, Q. Li35a, S. Li48, X. Li36c, Y. Li143, Z. Liang35a, B. Liberti135a, A. Liblong161, K. Lie62c, J. Liebal23, W. Liebig15, A. Limosani152, S.C. Lin182, T.H. Lin86, B.E. Lindquist150, A.E. Lionti52, E. Lipeles124, A. Lipniacka15, M. Lisovyi60b, T.M. Liss169;ah, A. Lister171, A.M. Litke139, B. Liu153;ai, H. Liu92, H. Liu27, J.K.K. Liu122, J. Liu36b, J.B. Liu36a, K. Liu88, L. Liu169, M. Liu36a, Y.L. Liu36a, Y. Liu36a, M. Livan123a;123b, A. Lleres58, J. Llorente Merino35a, S.L. Lloyd79, C.Y. Lo62b, F. Lo Sterzo153, E.M. Lobodzinska45, P. Loch7, F.K. Loebinger87, A. Loesle51, K.M. Loew25, A. Loginov179; , T. Lohse17, K. Lohwasser141, M. Lokajicek129, B.A. Long24, J.D. Long169, R.E. Long75, L. Longo76a;76b, K.A. Looper113, J.A. Lopez34b, D. Lopez Mateos59, I. Lopez Paz13, A. Lopez Solis83, J. Lorenz102, N. Lorenzo Martinez5, M. Losada21, P.J. Losel102, X. Lou35a, A. Lounis119, J. Love6, P.A. Love75, H. Lu62a, N. Lu92, Y.J. Lu63, H.J. Lubatti140, C. Luci134a;134b, A. Lucotte58, C. Luedtke51, F. Luehring64, W. Lukas65, L. Luminari134a, O. Lundberg148a;148b, B. Lund-Jensen149, M.S. Lutz89, P.M. Luzi83, D. Lynn27, R. Lysak129, E. Lytken84, F. Lyu35a, V. Lyubushkin68, H. Ma27, L.L. Ma36b, Y. Ma36b, G. Maccarrone50, A. Macchiolo103, C.M. Macdonald141, B. Macek78, J. Machado Miguens124;128b, D. Mada ari170, R. Madar37, W.F. Mader47, A. Madsen45, J. Maeda70, S. Maeland15, T. Maeno27, A.S. Maevskiy101, V. Magerl51, J. Mahlstedt109, C. Maiani119, C. Maidantchik26a, A.A. Maier103, T. Maier102, A. Maio128a;128b;128d, O. Majersky146a, S. Majewski118, Y. Makida69, N. Makovec119, B. Malaescu83, Pa. Malecki42, V.P. Maleev125, F. Malek58, U. Mallik66, D. Malon6, C. Malone30, S. Maltezos10, S. Malyukov32, J. Mamuzic170, G. Mancini50, I. Mandic78, J. Maneira128a;128b, L. Manhaes de Andrade Filho26b, J. Manjarres Ramos47, K.H. Mankinen84, A. Mann102, A. Manousos32, B. Mansoulie138, J.D. Mansour35a, R. Mantifel90, M. Mantoani57, S. Manzoni94a;94b, L. Mapelli32, G. Marceca29, L. March52, L. Marchese122, G. Marchiori83, M. Marcisovsky129, M. Marjanovic37, D.E. Marley92, F. Marroquim26a, S.P. Marsden87, Z. Marshall16, M.U.F Martensson168, S. Marti-Garcia170, C.B. Martin113, T.A. Martin173, V.J. Martin49, B. Martin dit Latour15, M. Martinez13;v, V.I. Martinez Outschoorn169, S. Martin-Haugh133, V.S. Martoiu28b, A.C. Martyniuk81, HJEP1(207)86 L. Massa135a;135b, P. Mastrandrea5, A. Mastroberardino40a;40b, T. Masubuchi157, P. Mattig178, H. Meyer Zu Theenhausen60a, F. Miano151, R.P. Middleton133, S. Miglioranzi53a;53b, L. Mijovic49, G. Mikenberg175, M. Mikestikova129, M. Mikuz78, M. Milesi91, A. Milic161, D.W. Miller33, C. Mills49, A. Milov175, D.A. Milstead148a;148b, A.A. Minaenko132, Y. Minami157, I.A. Minashvili68, A.I. Mincer112, B. Mindur41a, M. Mineev68, Y. Minegishi157, Y. Ming176, L.M. Mir13, K.P. Mistry124, T. Mitani174, J. Mitrevski102, V.A. Mitsou170, A. Miucci18, P.S. Miyagawa141, A. Mizukami69, J.U. Mjornmark84, T. Mkrtchyan180, M. Mlynarikova131, T. Moa148a;148b, K. Mochizuki97, P. Mogg51, S. Mohapatra38, S. Molander148a;148b, R. Moles-Valls23, R. Monden71, M.C. Mondragon93, K. Monig45, J. Monk39, E. Monnier88, A. Montalbano150, J. Montejo Berlingen32, F. Monticelli74, S. Monzani94a;94b, R.W. Moore3, N. Morange119, D. Moreno21, M. Moreno Llacer32, P. Morettini53a, S. Morgenstern32, D. Mori144, T. Mori157, M. Morii59, M. Morinaga157, V. Morisbak121, A.K. Morley32, G. Mornacchi32, J.D. Morris79, L. Morvaj150, P. Moschovakos10, M. Mosidze54b, H.J. Moss141, J. Moss145;ak, K. Motohashi159, R. Mount145, E. Mountricha27, E.J.W. Moyse89, S. Muanza88, F. Mueller103, J. Mueller127, R.S.P. Mueller102, D. Muenstermann75, P. Mullen56, G.A. Mullier18, F.J. Munoz Sanchez87, W.J. Murray173;133, H. Musheghyan32, M. Muskinja78, A.G. Myagkov132;al, M. Myska130, B.P. Nachman16, O. Nackenhorst52, K. Nagai122, R. Nagai69;ad, K. Nagano69, Y. Nagasaka61, K. Nagata164, M. Nagel51, E. Nagy88, A.M. Nairz32, Y. Nakahama105, K. Nakamura69, T. Nakamura157, I. Nakano114, R.F. Naranjo Garcia45, R. Narayan11, D.I. Narrias Villar60a, I. Naryshkin125, T. Naumann45, G. Navarro21, R. Nayyar7, H.A. Neal92, P.Yu. Nechaeva98, T.J. Neep138, A. Negri123a;123b, M. Negrini22a, S. Nektarijevic108, C. Nellist119, A. Nelson166, M.E. Nelson122, S. Nemecek129, P. Nemethy112, M. Nessi32;am, M.S. Neubauer169, M. Neumann178, P.R. Newman19, T.Y. Ng62c, T. Nguyen Manh97, R.B. Nickerson122, R. Nicolaidou138, J. Nielsen139, V. Nikolaenko132;al, I. Nikolic-Audit83, K. Nikolopoulos19, J.K. Nilsen121, P. Nilsson27, Y. Ninomiya157, A. Nisati134a, N. Nishu35c, R. Nisius103, I. Nitsche46, T. Nitta174, T. Nobe157, Y. Noguchi71, M. Nomachi120, I. Nomidis31, M.A. Nomura27, T. Nooney79, M. Nordberg32, N. Norjoharuddeen122, O. Novgorodova47, S. Nowak103, M. Nozaki69, L. Nozka117, K. Ntekas166, E. Nurse81, F. Nuti91, K. O'connor25, D.C. O'Neil144, A.A. O'Rourke45, V. O'Shea56, F.G. Oakham31;d, H. Oberlack103, T. Obermann23, J. Ocariz83, A. Ochi70, I. Ochoa38, J.P. Ochoa-Ricoux34a, S. Oda73, S. Odaka69, A. Oh87, S.H. Oh48, C.C. Ohm16, H. Ohman168, H. Oide53a;53b, H. Okawa164, Y. Okumura157, T. Okuyama69, A. Olariu28b, L.F. Oleiro Seabra128a, S.A. Olivares Pino49, D. Oliveira Damazio27, A. Olszewski42, J. Olszowska42, A. Onofre128a;128e, K. Onogi105, P.U.E. Onyisi11;z, H. Oppen121, M.J. Oreglia33, Y. Oren155, D. Orestano136a;136b, N. Orlando62b, R.S. Orr161, B. Osculati53a;53b; , R. Ospanov36a, G. Otero y Garzon29, H. Otono73, M. Ouchrif137d, F. Ould-Saada121, A. Ouraou138, K.P. Oussoren109, Q. Ouyang35a, M. Owen56, R.E. Owen19, V.E. Ozcan20a, N. Ozturk8, K. Pachal144, A. Pacheco Pages13, L. Pacheco Rodriguez138, C. Padilla Aranda13, S. Pagan Griso16, M. Paganini179, F. Paige27, G. Palacino64, S. Palazzo40a;40b, S. Palestini32, HJEP1(207)86 J.G. Panduro Vazquez80, P. Pani32, S. Panitkin27, D. Pantea28b, L. Paolozzi52, Th.D. Papadopoulou10, K. Papageorgiou9;s, A. Paramonov6, D. Paredes Hernandez179, A.J. Parker75, M.A. Parker30, K.A. Parker45, F. Parodi53a;53b, J.A. Parsons38, U. Parzefall51, V.R. Pascuzzi161, J.M. Pasner139, E. Pasqualucci134a, S. Passaggio53a, Fr. Pastore80, S. Pataraia86, J.R. Pater87, T. Pauly32, B. Pearson103, S. Pedraza Lopez170, R. Pedro128a;128b, S.V. Peleganchuk111;c, O. Penc129, C. Peng35a, H. Peng36a, J. Penwell64, B.S. Peralva26b, M.M. Perego138, D.V. Perepelitsa27, F. Peri17, L. Perini94a;94b, H. Pernegger32, S. Perrella106a;106b, R. Peschke45, V.D. Peshekhonov68; , K. Peters45, R.F.Y. Peters87, B.A. Petersen32, T.C. Petersen39, E. Petit58, A. Petridis1, C. Petridou156, P. Petro 119, E. Petrolo134a, M. Petrov122, F. Petrucci136a;136b, N.E. Pettersson89, A. Peyaud138, R. Pezoa34b, F.H. Phillips93, P.W. Phillips133, G. Piacquadio150, E. Pianori173, A. Picazio89, E. Piccaro79, M.A. Pickering122, R. Piegaia29, J.E. Pilcher33, A.D. Pilkington87, A.W.J. Pin87, M. Pinamonti135a;135b, J.L. Pinfold3, H. Pirumov45, M. Pitt175, L. Plazak146a, M.-A. Pleier27, V. Pleskot86, E. Plotnikova68, D. Pluth67, P. Podberezko111, R. Poettgen148a;148b, R. Poggi123a;123b, L. Poggioli119, D. Pohl23, G. Polesello123a, A. Poley45, A. Policicchio40a;40b, R. Polifka32, A. Polini22a, C.S. Pollard56, V. Polychronakos27, K. Pommes32, D. Ponomarenko100, L. Pontecorvo134a, G.A. Popeneciu28d, A. Poppleton32, S. Pospisil130, K. Potamianos16, I.N. Potrap68, C.J. Potter30, G. Poulard32, T. Poulsen84, J. Poveda32, M.E. Pozo Astigarraga32, P. Pralavorio88, A. Pranko16, S. Prell67, D. Price87, M. Primavera76a, S. Prince90, N. Proklova100, K. Proko ev62c, F. Prokoshin34b, S. Protopopescu27, J. Proudfoot6, M. Przybycien41a, A. Puri169, P. Puzo119, J. Qian92, G. Qin56, Y. Qin87, A. Quadt57, M. Queitsch-Maitland45, D. Quilty56, S. Raddum121, V. Radeka27, V. Radescu122, S.K. Radhakrishnan150, P. Radlo 118, P. Rados91, F. Ragusa94a;94b, G. Rahal181, J.A. Raine87, S. Rajagopalan27, C. Rangel-Smith168, T. Rashid119, S. Raspopov5, M.G. Ratti94a;94b, D.M. Rauch45, F. Rauscher102, S. Rave86, I. Ravinovich175, J.H. Rawling87, M. Raymond32, A.L. Read121, N.P. Readio 58, M. Reale76a;76b, D.M. Rebuzzi123a;123b, A. Redelbach177, G. Redlinger27, R. Reece139, R.G. Reed147c, K. Reeves44, L. Rehnisch17, J. Reichert124, A. Reiss86, C. Rembser32, H. Ren35a, M. Rescigno134a, S. Resconi94a, E.D. Resseguie124, S. Rettie171, E. Reynolds19, O.L. Rezanova111;c, P. Reznicek131, R. Rezvani97, R. Richter103, S. Richter81, E. Richter-Was41b, O. Ricken23, M. Ridel83, P. Rieck103, C.J. Riegel178, J. Rieger57, O. Rifki115, M. Rijssenbeek150, A. Rimoldi123a;123b, M. Rimoldi18, L. Rinaldi22a, G. Ripellino149, B. Ristic32, E. Ritsch32, I. Riu13, F. Rizatdinova116, E. Rizvi79, C. Rizzi13, R.T. Roberts87, S.H. Robertson90;o, A. Robichaud-Veronneau90, D. Robinson30, J.E.M. Robinson45, A. Robson56, E. Rocco86, C. Roda126a;126b, Y. Rodina88;an, S. Rodriguez Bosca170, A. Rodriguez Perez13, D. Rodriguez Rodriguez170, S. Roe32, C.S. Rogan59, O. R hne121, J. Rolo 59, A. Romaniouk100, M. Romano22a;22b, S.M. Romano Saez37, E. Romero Adam170, N. Rompotis77, M. Ronzani51, L. Roos83, S. Rosati134a, K. Rosbach51, P. Rose139, N.-A. Rosien57, E. Rossi106a;106b, L.P. Rossi53a, J.H.N. Rosten30, R. Rosten140, M. Rotaru28b, J. Rothberg140, D. Rousseau119, A. Rozanov88, Y. Rozen154, X. Ruan147c, F. Rubbo145, F. Ruhr51, A. Ruiz-Martinez31, Z. Rurikova51, N.A. Rusakovich68, H.L. Russell90, J.P. Rutherfoord7, N. Ruthmann32, Y.F. Ryabov125, M. Rybar169, G. Rybkin119, S. Ryu6, A. Ryzhov132, G.F. Rzehorz57, A.F. Saavedra152, G. Sabato109, S. Sacerdoti29, H.F-W. Sadrozinski139, R. Sadykov68, F. Safai Tehrani134a, P. Saha110, M. Sahinsoy60a, M. Saimpert45, M. Saito157, T. Saito157, H. Sakamoto157, Y. Sakurai174, G. Salamanna136a;136b, J.E. Salazar Loyola34b, D. Salek109, P.H. Sales De Bruin168, D. Salihagic103, A. Salnikov145, J. Salt170, D. Salvatore40a;40b, F. Salvatore151, A. Salvucci62a;62b;62c, A. Salzburger32, D. Sammel51, D. Sampsonidis156, D. Sampsonidou156, J. Sanchez170, V. Sanchez Martinez170, A. Sanchez Pineda167a;167c, H. Sandaker121, R.L. Sandbach79, C.O. Sander45, M. Sandho 178, HJEP1(207)86 H. Santos128a, I. Santoyo Castillo151, A. Sapronov68, J.G. Saraiva128a;128d, B. Sarrazin23, O. Sasaki69, K. Sato164, E. Sauvan5, G. Savage80, P. Savard161;d, N. Savic103, C. Sawyer133, L. Sawyer82;u, J. Saxon33, C. Sbarra22a, A. Sbrizzi22a;22b, T. Scanlon81, D.A. Scannicchio166, M. Scarcella152, J. Schaarschmidt140, P. Schacht103, B.M. Schachtner102, D. Schaefer32, L. Schaefer124, R. Schaefer45, J. Schae er86, S. Schaepe23, S. Schaetzel60b, U. Schafer86, A.C. Scha er119, D. Schaile102, R.D. Schamberger150, V.A. Schegelsky125, D. Scheirich131, M. Schernau166, C. Schiavi53a;53b, S. Schier139, L.K. Schildgen23, C. Schillo51, M. Schioppa40a;40b, S. Schlenker32, K.R. Schmidt-Sommerfeld103, K. Schmieden32, C. Schmitt86, S. Schmitt45, S. Schmitz86, U. Schnoor51, L. Schoe el138, A. Schoening60b, B.D. Schoenrock93, E. Schopf23, M. Schott86, J.F.P. Schouwenberg108, J. Schovancova32, S. Schramm52, N. Schuh86, A. Schulte86, M.J. Schultens23, H.-C. Schultz-Coulon60a, H. Schulz17, M. Schumacher51, B.A. Schumm139, Ph. Schune138, A. Schwartzman145, T.A. Schwarz92, H. Schweiger87, Ph. Schwemling138, R. Schwienhorst93, J. Schwindling138, A. Sciandra23, G. Sciolla25, M. Scornajenghi40a;40b, F. Scuri126a;126b, F. Scutti91, J. Searcy92, P. Seema23, S.C. Seidel107, A. Seiden139, J.M. Seixas26a, G. Sekhniaidze106a, K. Sekhon92, S.J. Sekula43, N. Semprini-Cesari22a;22b, S. Senkin37, C. Serfon121, L. Serin119, L. Serkin167a;167b, M. Sessa136a;136b, R. Seuster172, H. Severini115, T. S ligoj78, F. Sforza32, A. Sfyrla52, E. Shabalina57, N.W. Shaikh148a;148b, L.Y. Shan35a, R. Shang169, J.T. Shank24, M. Shapiro16, P.B. Shatalov99, K. Shaw167a;167b, S.M. Shaw87, A. Shcherbakova148a;148b, C.Y. Shehu151, Y. Shen115, N. Sherafati31, P. Sherwood81, L. Shi153;ao, S. Shimizu70, C.O. Shimmin179, M. Shimojima104, I.P.J. Shipsey122, S. Shirabe73, M. Shiyakova68;ap, J. Shlomi175, A. Shmeleva98, D. Shoaleh Saadi97, M.J. Shochet33, S. Shojaii94a, D.R. Shope115, S. Shrestha113, E. Shulga100, M.A. Shupe7, P. Sicho129, A.M. Sickles169, P.E. Sidebo149, E. Sideras Haddad147c, O. Sidiropoulou177, A. Sidoti22a;22b, F. Siegert47, Dj. Sijacki14, J. Silva128a;128d, S.B. Silverstein148a, V. Simak130, Lj. Simic14, S. Simion119, E. Simioni86, B. Simmons81, M. Simon86, P. Sinervo161, N.B. Sinev118, M. Sioli22a;22b, G. Siragusa177, I. Siral92, S.Yu. Sivoklokov101, J. Sjolin148a;148b, M.B. Skinner75, P. Skubic115, M. Slater19, T. Slavicek130, M. Slawinska42, K. Sliwa165, R. Slovak131, V. Smakhtin175, B.H. Smart5, J. Smiesko146a, N. Smirnov100, S.Yu. Smirnov100, Y. Smirnov100, L.N. Smirnova101;aq, O. Smirnova84, J.W. Smith57, M.N.K. Smith38, R.W. Smith38, M. Smizanska75, K. Smolek130, A.A. Snesarev98, I.M. Snyder118, S. Snyder27, R. Sobie172;o, F. Socher47, A. So er155, A. S gaard49, D.A. Soh153, G. Sokhrannyi78, C.A. Solans Sanchez32, M. Solar130, E.Yu. Soldatov100, U. Soldevila170, A.A. Solodkov132, A. Soloshenko68, O.V. Solovyanov132, V. Solovyev125, P. Sommer51, H. Son165, A. Sopczak130, D. Sosa60b, C.L. Sotiropoulou126a;126b, R. Soualah167a;167c, A.M. Soukharev111;c, D. South45, B.C. Sowden80, S. Spagnolo76a;76b, M. Spalla126a;126b, M. Spangenberg173, F. Spano80, D. Sperlich17, F. Spettel103, T.M. Spieker60a, R. Spighi22a, G. Spigo32, L.A. Spiller91, M. Spousta131, R.D. St. Denis56; , A. Stabile94a, R. Stamen60a, S. Stamm17, E. Stanecka42, R.W. Stanek6, C. Stanescu136a, M.M. Stanitzki45, B.S. Stapf109, S. Stapnes121, E.A. Starchenko132, G.H. Stark33, J. Stark58, S.H Stark39, P. Staroba129, P. Starovoitov60a, S. Starz32, R. Staszewski42, P. Steinberg27, B. Stelzer144, H.J. Stelzer32, O. Stelzer-Chilton163a, H. Stenzel55, G.A. Stewart56, M.C. Stockton118, M. Stoebe90, G. Stoicea28b, P. Stolte57, S. Stonjek103, A.R. Stradling8, A. Straessner47, M.E. Stramaglia18, J. Strandberg149, S. Strandberg148a;148b, M. Strauss115, P. Strizenec146b, R. Strohmer177, D.M. Strom118, R. Stroynowski43, A. Strubig49, S.A. Stucci27, B. Stugu15, N.A. Styles45, D. Su145, J. Su127, S. Suchek60a, Y. Sugaya120, M. Suk130, V.V. Sulin98, DMS Sultan162a;162b, S. Sultansoy4c, T. Sumida71, S. Sun59, X. Sun3, K. Suruliz151, C.J.E. Suster152, M.R. Sutton151, S. Suzuki69, M. Svatos129, M. Swiatlowski33, S.P. Swift2, I. Sykora146a, T. Sykora131, D. Ta51, K. Tackmann45, J. Taenzer155, A. Ta ard166, HJEP1(207)86 Y. Takubo69, M. Talby88, A.A. Talyshev111;c, J. Tanaka157, M. Tanaka159, R. Tanaka119, S. Tanaka69, R. Tanioka70, B.B. Tannenwald113, S. Tapia Araya34b, S. Tapprogge86, S. Tarem154, G.F. Tartarelli94a, P. Tas131, M. Tasevsky129, T. Tashiro71, E. Tassi40a;40b, A. Tavares Delgado128a;128b, Y. Tayalati137e, A.C. Taylor107, G.N. Taylor91, P.T.E. Taylor91, W. Taylor163b, P. Teixeira-Dias80, D. Temple144, H. Ten Kate32, P.K. Teng153, J.J. Teoh120, F. Tepel178, S. Terada69, K. Terashi157, J. Terron85, S. Terzo13, M. Testa50, R.J. Teuscher161;o, T. Theveneaux-Pelzer88, F. Thiele39, J.P. Thomas19, J. Thomas-Wilsker80, P.D. Thompson19, A.S. Thompson56, L.A. Thomsen179, E. Thomson124, M.J. Tibbetts16, R.E. Ticse Torres88, V.O. Tikhomirov98;ar, Yu.A. Tikhonov111;c, S. Timoshenko100, P. Tipton179, S. Tisserant88, K. Todome159, S. Todorova-Nova5, S. Todt47, J. Tojo73, S. Tokar146a, K. Tokushuku69, E. Tolley59, L. Tomlinson87, M. Tomoto105, L. Tompkins145;as, K. Toms107, B. Tong59, P. Tornambe51, E. Torrence118, H. Torres144, E. Torro Pastor140, J. Toth88;at, F. Touchard88, D.R. Tovey141, C.J. Treado112, T. Trefzger177, F. Tresoldi151, A. Tricoli27, I.M. Trigger163a, S. Trincaz-Duvoid83, M.F. Tripiana13, W. Trischuk161, B. Trocme58, A. Trofymov45, C. Troncon94a, M. Trottier-McDonald16, M. Trovatelli172, L. Truong147b, M. Trzebinski42, A. Trzupek42, K.W. Tsang62a, J.C-L. Tseng122, P.V. Tsiareshka95, G. Tsipolitis10, N. Tsirintanis9, S. Tsiskaridze13, V. Tsiskaridze51, E.G. Tskhadadze54a, K.M. Tsui62a, I.I. Tsukerman99, V. Tsulaia16, S. Tsuno69, D. Tsybychev150, Y. Tu62b, A. Tudorache28b, V. Tudorache28b, T.T. Tulbure28a, A.N. Tuna59, S.A. Tupputi22a;22b, S. Turchikhin68, D. Turgeman175, I. Turk Cakir4b;au, R. Turra94a, P.M. Tuts38, G. Ucchielli22a;22b, I. Ueda69, M. Ughetto148a;148b, F. Ukegawa164, G. Unal32, A. Undrus27, G. Unel166, F.C. Ungaro91, Y. Unno69, C. Unverdorben102, J. Urban146b, P. Urquijo91, P. Urrejola86, G. Usai8, J. Usui69, L. Vacavant88, V. Vacek130, B. Vachon90, K.O.H. Vadla121, A. Vaidya81, C. Valderanis102, E. Valdes Santurio148a;148b, S. Valentinetti22a;22b, A. Valero170, L. Valery13, S. Valkar131, A. Vallier5, J.A. Valls Ferrer170, W. Van Den Wollenberg109, H. van der Graaf109, P. van Gemmeren6, J. Van Nieuwkoop144, I. van Vulpen109, M.C. van Woerden109, M. Vanadia135a;135b, W. Vandelli32, A. Vaniachine160, P. Vankov109, G. Vardanyan180, R. Vari134a, E.W. Varnes7, C. Varni53a;53b, T. Varol43, D. Varouchas119, A. Vartapetian8, K.E. Varvell152, J.G. Vasquez179, G.A. Vasquez34b, F. Vazeille37, T. Vazquez Schroeder90, J. Veatch57, V. Veeraraghavan7, L.M. Veloce161, F. Veloso128a;128c, S. Veneziano134a, A. Ventura76a;76b, M. Venturi172, N. Venturi32, A. Venturini25, V. Vercesi123a, M. Verducci136a;136b, W. Verkerke109, A.T. Vermeulen109, J.C. Vermeulen109, M.C. Vetterli144;d, N. Viaux Maira34b, O. Viazlo84, I. Vichou169; , T. Vickey141, O.E. Vickey Boeriu141, G.H.A. Viehhauser122, S. Viel16, L. Vigani122, M. Villa22a;22b, M. Villaplana Perez94a;94b, E. Vilucchi50, M.G. Vincter31, V.B. Vinogradov68, A. Vishwakarma45, C. Vittori22a;22b, I. Vivarelli151, S. Vlachos10, M. Vogel178, P. Vokac130, G. Volpi126a;126b, H. von der Schmitt103, E. von Toerne23, V. Vorobel131, K. Vorobev100, M. Vos170, R. Voss32, J.H. Vossebeld77, N. Vranjes14, M. Vranjes Milosavljevic14, V. Vrba130, M. Vreeswijk109, R. Vuillermet32, I. Vukotic33, P. Wagner23, W. Wagner178, J. Wagner-Kuhr102, H. Wahlberg74, S. Wahrmund47, J. Wakabayashi105, J. Walder75, R. Walker102, W. Walkowiak143, V. Wallangen148a;148b, C. Wang35b, C. Wang36b;av, F. Wang176, H. Wang16, H. Wang3, J. Wang45, J. Wang152, Q. Wang115, R. Wang6, S.M. Wang153, T. Wang38, W. Wang153;aw, W. Wang36a, Z. Wang36c, C. Wanotayaroj118, A. Warburton90, C.P. Ward30, D.R. Wardrope81, A. Washbrook49, P.M. Watkins19, A.T. Watson19, M.F. Watson19, G. Watts140, S. Watts87, B.M. Waugh81, A.F. Webb11, S. Webb86, M.S. Weber18, S.W. Weber177, S.A. Weber31, J.S. Webster6, A.R. Weidberg122, B. Weinert64, J. Weingarten57, M. Weirich86, C. Weiser51, H. Weits109, P.S. Wells32, T. Wenaus27, T. Wengler32, S. Wenig32, N. Wermes23, M.D. Werner67, P. Werner32, M. Wessels60a, K. Whalen118, N.L. Whallon140, A.M. Wharton75, A.S. White92, HJEP1(207)86 W. Wiedenmann176, M. Wielers133, C. Wiglesworth39, L.A.M. Wiik-Fuchs51, A. Wildauer103, F. Wilk87, H.G. Wilkens32, H.H. Williams124, S. Williams109, C. Willis93, S. Willocq89, J.A. Wilson19, I. Wingerter-Seez5, E. Winkels151, F. Winklmeier118, O.J. Winston151, B.T. Winter23, M. Wittgen145, M. Wobisch82;u, T.M.H. Wolf109, R. Wol 88, M.W. Wolter42, H. Wolters128a;128c, V.W.S. Wong171, S.D. Worm19, B.K. Wosiek42, J. Wotschack32, K.W. Wozniak42, M. Wu33, S.L. Wu176, X. Wu52, Y. Wu92, T.R. Wyatt87, B.M. Wynne49, S. Xella39, Z. Xi92, L. Xia35c, D. Xu35a, L. Xu27, T. Xu138, B. Yabsley152, S. Yacoob147a, D. Yamaguchi159, Y. Yamaguchi120, A. Yamamoto69, S. Yamamoto157, T. Yamanaka157, M. Yamatani157, K. Yamauchi105, Y. Yamazaki70, Z. Yan24, H. Yang36c, H. Yang16, Y. Yang153, Z. Yang15, W-M. Yao16, Y.C. Yap83, Y. Yasu69, E. Yatsenko5, K.H. Yau Wong23, J. Ye43, S. Ye27, I. Yeletskikh68, E. Yigitbasi24, E. Yildirim86, K. Yorita174, K. Yoshihara124, C. Young145, C.J.S. Young32, J. Yu8, J. Yu67, S.P.Y. Yuen23, I. Yusu 30;ax, B. Zabinski42, G. Zacharis10, R. Zaidan13, A.M. Zaitsev132;al, N. Zakharchuk45, J. Zalieckas15, A. Zaman150, S. Zambito59, D. Zanzi91, C. Zeitnitz178, G. Zemaityte122, A. Zemla41a, J.C. Zeng169, Q. Zeng145, O. Zenin132, T. Zenis146a, D. Zerwas119, D. Zhang92, F. Zhang176, G. Zhang36a;ay, H. Zhang35b, J. Zhang6, L. Zhang51, L. Zhang36a, M. Zhang169, P. Zhang35b, R. Zhang23, R. Zhang36a;av, X. Zhang36b, Y. Zhang35a, Z. Zhang119, X. Zhao43, Y. Zhao36b;az, Z. Zhao36a, A. Zhemchugov68, B. Zhou92, C. Zhou176, L. Zhou43, M. Zhou35a, M. Zhou150, N. Zhou35c, C.G. Zhu36b, H. Zhu35a, J. Zhu92, Y. Zhu36a, X. Zhuang35a, K. Zhukov98, A. Zibell177, D. Zieminska64, N.I. Zimine68, C. Zimmermann86, S. Zimmermann51, Z. Zinonos103, M. Zinser86, M. Ziolkowski143, L. Zivkovic14, G. Zobernig176, A. Zoccoli22a;22b, R. Zou33, M. zur Nedden17, L. Zwalinski32. 1 Department of Physics, University of Adelaide, Adelaide, Australia 2 Physics Department, SUNY Albany, Albany NY, United States of America 3 Department of Physics, University of Alberta, Edmonton AB, Canada 4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey 5 LAPP, CNRS/IN2P3 and Universite Savoie Mont Blanc, Annecy-le-Vieux, France 6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America 7 Department of Physics, University of Arizona, Tucson AZ, United States of America 8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of Barcelona, Spain 9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece 10 Physics Department, National Technical University of Athens, Zografou, Greece 11 Department of Physics, The University of Texas at Austin, Austin TX, United States of America 12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan 13 Institut de F sica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, 14 Institute of Physics, University of Belgrade, Belgrade, Serbia 15 Department for Physics and Technology, University of Bergen, Bergen, Norway 16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America 17 Department of Physics, Humboldt University, Berlin, Germany 18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland 19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (e) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey HJEP1(207)86 22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Universita di Bologna, Bologna, Italy Paulo, Brazil 23 Physikalisches Institut, University of Bonn, Bonn, Germany 24 Department of Physics, Boston University, Boston MA, United States of America 25 Department of Physics, Brandeis University, Waltham MA, United States of America 26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao 27 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America 28 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania 29 Departamento de F sica, Universidad de Buenos Aires, Buenos Aires, Argentina 30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 31 Department of Physics, Carleton University, Ottawa ON, Canada 32 CERN, Geneva, Switzerland 33 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America 34 (a) Departamento de F sica, Ponti cia Universidad Catolica de Chile, Santiago; (b) Departamento de F sica, Universidad Tecnica Federico Santa Mar a, Valpara so, Chile 35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China 36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics, Shandong University, Shandong; (c) Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai(also at PKU-CHEP), China 37 Universite Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France 38 Nevis Laboratory, Columbia University, Irvington NY, United States of America 39 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark 40 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Universita della Calabria, Rende, Italy 41 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland 42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland 43 Physics Department, Southern Methodist University, Dallas TX, United States of America 44 Physics Department, University of Texas at Dallas, Richardson TX, United States of America 45 DESY, Hamburg and Zeuthen, Germany 46 Lehrstuhl fur Experimentelle Physik IV, Technische Universitat Dortmund, Dortmund, Germany 47 Institut fur Kern- und Teilchenphysik, Technische Universitat Dresden, Dresden, Germany 48 Department of Physics, Duke University, Durham NC, United States of America 49 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom 50 INFN e Laboratori Nazionali di Frascati, Frascati, Italy 51 Fakultat fur Mathematik und Physik, Albert-Ludwigs-Universitat, Freiburg, Germany 52 Departement de Physique Nucleaire et Corpusculaire, Universite de Geneve, Geneva, Switzerland 53 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Universita di Genova, Genova, Italy 54 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia 56 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom 57 II Physikalisches Institut, Georg-August-Universitat, Gottingen, Germany 58 Laboratoire de Physique Subatomique et de Cosmologie, Universite Grenoble-Alpes, CNRS/IN2P3, Grenoble, France 59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States 60 (a) Kirchho -Institut fur Physik, Ruprecht-Karls-Universitat Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universitat Heidelberg, Heidelberg, Germany 61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan 62 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China 63 Department of Physics, National Tsing Hua University, Taiwan, Taiwan 64 Department of Physics, Indiana University, Bloomington IN, United States of America 65 Institut fur Astro- und Teilchenphysik, Leopold-Franzens-Universitat, Innsbruck, Austria 66 University of Iowa, Iowa City IA, United States of America 67 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America 68 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia 69 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan 70 Graduate School of Science, Kobe University, Kobe, Japan 71 Faculty of Science, Kyoto University, Kyoto, Japan 72 Kyoto University of Education, Kyoto, Japan 73 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan Italy 74 Instituto de F sica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina 75 Physics Department, Lancaster University, Lancaster, United Kingdom 76 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Universita del Salento, Lecce, 77 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom 78 Department of Experimental Particle Physics, Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia 79 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom 80 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom 81 Department of Physics and Astronomy, University College London, London, United Kingdom 82 Louisiana Tech University, Ruston LA, United States of America 83 Laboratoire de Physique Nucleaire et de Hautes Energies, UPMC and Universite Paris-Diderot and CNRS/IN2P3, Paris, France 84 Fysiska institutionen, Lunds universitet, Lund, Sweden 85 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain 86 Institut fur Physik, Universitat Mainz, Mainz, Germany 87 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom 88 CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France 89 Department of Physics, University of Massachusetts, Amherst MA, United States of America 90 Department of Physics, McGill University, Montreal QC, Canada 91 School of Physics, University of Melbourne, Victoria, Australia 92 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America 93 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States 94 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Universita di Milano, Milano, Italy Belarus Belarus 96 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Republic of 97 Group of Particle Physics, University of Montreal, Montreal QC, Canada 98 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia 99 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia 100 National Research Nuclear University MEPhI, Moscow, Russia 101 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, 102 Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Munchen, Germany 103 Max-Planck-Institut fur Physik (Werner-Heisenberg-Institut), Munchen, Germany 104 Nagasaki Institute of Applied Science, Nagasaki, Japan 105 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan 106 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Universita di Napoli, Napoli, Italy 107 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States Nijmegen/Nikhef, Nijmegen, Netherlands 108 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University 109 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, 110 Department of Physics, Northern Illinois University, DeKalb IL, United States of America 111 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia 112 Department of Physics, New York University, New York NY, United States of America 113 Ohio State University, Columbus OH, United States of America 114 Faculty of Science, Okayama University, Okayama, Japan 115 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America 116 Department of Physics, Oklahoma State University, Stillwater OK, United States of America 117 Palacky University, RCPTM, Olomouc, Czech Republic 118 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America 119 LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France 120 Graduate School of Science, Osaka University, Osaka, Japan 121 Department of Physics, University of Oslo, Oslo, Norway 122 Department of Physics, Oxford University, Oxford, United Kingdom 123 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Universita di Pavia, Pavia, Italy 124 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America 125 National Research Centre "Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia 126 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Universita di Pisa, Pisa, Italy 127 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of 128 (a) Laboratorio de Instrumentaca~o e F sica Experimental de Part culas - LIP, Lisboa; (b) Faculdade de Ci^encias, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de F sica Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada; (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal 129 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic 130 Czech Technical University in Prague, Praha, Czech Republic 131 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 132 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia Vergata, Roma, Italy Roma, Italy 134 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Universita di Roma, Roma, Italy 135 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Universita di Roma Tor 136 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Universita Roma Tre, 137 (a) Faculte des Sciences Ain Chock, Reseau Universitaire de Physique des Hautes Energies Universite Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculte des Sciences Semlalia, Universite Cadi Ayyad, LPHEA-Marrakech; (d) Faculte des Sciences, Universite Mohamed Premier and LPTPM, Oujda; (e) Faculte des sciences, Universite Mohammed V, Rabat, Morocco 138 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France 139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America 140 Department of Physics, University of Washington, Seattle WA, United States of America 141 Department of Physics and Astronomy, University of She eld, She eld, United Kingdom 142 Department of Physics, Shinshu University, Nagano, Japan 143 Department Physik, Universitat Siegen, Siegen, Germany 144 Department of Physics, Simon Fraser University, Burnaby BC, Canada 145 SLAC National Accelerator Laboratory, Stanford CA, United States of America 146 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic 147 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa United States of America 148 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden 149 Physics Department, Royal Institute of Technology, Stockholm, Sweden 150 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, 151 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom 152 School of Physics, University of Sydney, Sydney, Australia 153 Institute of Physics, Academia Sinica, Taipei, Taiwan 154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel 155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel of Tokyo, Tokyo, Japan 156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece 157 International Center for Elementary Particle Physics and Department of Physics, The University 158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan 159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan 160 Tomsk State University, Tomsk, Russia 161 Department of Physics, University of Toronto, Toronto ON, Canada 162 (a) INFN-TIFPA; (b) University of Trento, Trento, Italy 163 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada 164 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan 165 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America 166 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of di Chimica, Fisica e Ambiente, Universita di Udine, Udine, Italy 168 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden 169 Department of Physics, University of Illinois, Urbana IL, United States of America 171 Department of Physics, University of British Columbia, Vancouver BC, Canada 172 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada 173 Department of Physics, University of Warwick, Coventry, United Kingdom 174 Waseda University, Tokyo, Japan 175 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel 176 Department of Physics, University of Wisconsin, Madison WI, United States of America 177 Fakultat fur Physik und Astronomie, Julius-Maximilians-Universitat, Wurzburg, Germany 178 Fakultat fur Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universitat Wuppertal, Wuppertal, Germany 179 Department of Physics, Yale University, New Haven CT, United States of America 180 Yerevan Physics Institute, Yerevan, Armenia 181 Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 182 Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan a Also at Department of Physics, King's College London, London, United Kingdom b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan c Also at Novosibirsk State University, Novosibirsk, Russia d Also at TRIUMF, Vancouver BC, Canada e Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America f Also at Physics Department, An-Najah National University, Nablus, Palestine g Also at Department of Physics, California State University, Fresno CA, United States of America h Also at Department of Physics, University of Fribourg, Fribourg, Switzerland i Also at II Physikalisches Institut, Georg-August-Universitat, Gottingen, Germany j Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain k Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, United States of America r Also at Borough of Manhattan Community College, City University of New York, New York City, s Also at Department of Financial and Management Engineering, University of the Aegean, Chios, t Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South u Also at Louisiana Tech University, Ruston LA, United States of America v Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain Also at Graduate School of Science, Osaka University, Osaka, Japan x Also at Fakultat fur Mathematik und Physik, Albert-Ludwigs-Universitat, Freiburg, Germany y Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China Portugal l Also at Tomsk State University, Tomsk, Russia n Also at Universita di Napoli Parthenope, Napoli, Italy o Also at Institute of Particle Physics (IPP), Canada p Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania q Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, America Switzerland aa Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia ab Also at CERN, Geneva, Switzerland ac Also at Georgian Technical University (GTU),Tbilisi, Georgia ae Also at Manhattan College, New York NY, United States of America af Also at Departamento de F sica, Ponti cia Universidad Catolica de Chile, Santiago, Chile ag Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of ah Also at The City College of New York, New York NY, United States of America ai Also at School of Physics, Shandong University, Shandong, China al Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia Also at Departement de Physique Nucleaire et Corpusculaire, Universite de Geneve, Geneva, an Also at Institut de F sica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain ao Also at School of Physics, Sun Yat-sen University, Guangzhou, China ap Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of aq Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia ar Also at National Research Nuclear University MEPhI, Moscow, Russia as Also at Department of Physics, Stanford University, Stanford CA, United States of America at Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary Deceased av Also at CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France az Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France [1] U. Baur , A. Juste , L.H. Orr and D. Rainwater , Probing electroweak top quark couplings at hadron colliders , Phys. Rev. D 71 ( 2005 ) 054013 [ hep -ph/0412021] [INSPIRE]. [2] A.O. Bouzas and F. Larios , Electromagnetic dipole moments of the top quark , Phys. Rev . D [11] T. Sj ostrand, S. Mrenna and P. Skands , A brief introduction to PYTHIA 8.1, Comput . Phys. [15] T. Sj ostrand, S. Mrenna and P. Skands, PYTHIA 6.4 physics and manual , JHEP 05 ( 2006 ) [18] P.Z. Skands , Tuning Monte Carlo generators: The Perugia tunes , Phys. Rev. D 82 ( 2010 ) [27] S. Frixione , E. Laenen, P. Motylinski , B.R. Webber and C.D. White , Single-top hadroproduction in association with a W boson , JHEP 07 ( 2008 ) 029 [arXiv: 0805 .3067] [28] N. Kidonakis , Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production , Phys. Rev. D 83 ( 2011 ) 091503(R) [ arXiv:1103 .2792] [31] J.M. Butterworth , J.R. Forshaw and M.H. Seymour , Multiparton interactions in photoproduction at HERA, Z. Phys . C 72 ( 1996 ) 637 [ hep -ph/9601371] [INSPIRE]. [32] ATLAS collaboration, New ATLAS event generator tunes to 2010 data, [33] J.M. Campbell , R.K. Ellis and C. Williams , Vector boson pair production at the LHC, JHEP detector using 2011 and 2012 LHC proton-proton collision data , Eur. Phys. J. C 74 ( 2014 ) [45] K. Rehermann and B. Tweedie , E detector using LHC Run-1 data, Eur . Phys. J. C 76 ( 2016 ) 666 [arXiv: 1606 . 01813 ] [49] M. Cacciari , G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm , JHEP 04 ( 2008 ) hadron colliders , Nucl. Phys. B 357 ( 1991 ) 32 [INSPIRE]. [62] F.A. Berends , H. Kuijf , B. Tausk and W.T. Giele , On the production of a W and jets at s = 7 TeV with the ATLAS detector , Eur. Phys. J. C 75 ( 2015 ) [64] ATLAS collaboration, Jet energy resolution in proton-proton collisions at ps = 7 TeV recorded in 2010 with the ATLAS detector , Eur. Phys. J. C 73 ( 2013 ) 2306

This is a preview of a remote PDF:

M. Aaboud, G. Aad, B. Abbott, O. Abdinov, B. Abeloos, S. H. Abidi, O. S. AbouZeid, N. L. Abraham, H. Abramowicz, H. Abreu, R. Abreu, Y. Abulaiti, B. S. Acharya, S. Adachi, L. Adamczyk, J. Adelman, M. Adersberger, T. Adye, A. A. Affolder, T. Agatonovic-Jovin, C. Agheorghiesei, J. A. Aguilar-Saavedra, S. P. Ahlen, F. Ahmadov, G. Aielli, S. Akatsuka, H. Akerstedt, T. P. A. Åkesson, E. Akilli, A. V. Akimov, G. L. Alberghi, J. Albert, P. Albicocco, M. J. Alconada Verzini, S. C. Alderweireldt, M. Aleksa, I. N. Aleksandrov, C. Alexa, G. Alexander, T. Alexopoulos, M. Alhroob, B. Ali, M. Aliev, G. Alimonti, J. Alison, S. P. Alkire, B. M. M. Allbrooke, B. W. Allen, P. P. Allport, A. Aloisio, A. Alonso, F. Alonso, C. Alpigiani, A. A. Alshehri, M. I. Alstaty, B. Alvarez Gonzalez, D. Álvarez Piqueras, M. G. Alviggi, B. T. Amadio, Y. Amaral Coutinho, C. Amelung, D. Amidei, S. P. Amor Dos Santos, A. Amorim, S. Amoroso, G. Amundsen, C. Anastopoulos, L. S. Ancu, N. Andari, T. Andeen, C. F. Anders, J. K. Anders, K. J. Anderson, A. Andreazza, V. Andrei, S. Angelidakis, I. Angelozzi, A. Angerami, A. V. Anisenkov, N. Anjos, A. Annovi, C. Antel, M. Antonelli, A. Antonov, D. J. Antrim, F. Anulli, M. Aoki, L. Aperio Bella, G. Arabidze, Y. Arai, J. P. Araque, V. Araujo Ferraz, A. T. H. Arce, R. E. Ardell, F. A. Arduh, J-F. Arguin, S. Argyropoulos, M. Arik, A. J. Armbruster, L. J. Armitage, O. Arnaez, H. Arnold, M. Arratia, O. Arslan, A. Artamonov, G. Artoni, S. Artz, S. Asai, N. Asbah, A. Ashkenazi, L. Asquith, K. Assamagan, R. Astalos, M. Atkinson, N. B. Atlay, K. Augsten, G. Avolio, B. Axen, M. K. Ayoub, G. Azuelos, A. E. Baas, M. J. Baca, H. Bachacou, K. Bachas, M. Backes, M. Backhaus, P. Bagnaia, M. Bahmani, H. Bahrasemani, J. T. Baines, M. Bajic, O. K. Baker, E. M. Baldin, P. Balek, F. Balli, W. K. Balunas, E. Banas, A. Bandyopadhyay, Sw. Banerjee, A. A. E. Bannoura, L. Barak, E. L. Barberio, D. Barberis, M. Barbero, T. Barillari, M-S Barisits, J. T. Barkeloo, T. Barklow, N. Barlow, S. L. Barnes, B. M. Barnett, R. M. Barnett, Z. Barnovska-Blenessy, A. Baroncelli, G. Barone, A. J. Barr, L. Barranco Navarro, F. Barreiro, J. Barreiro Guimarães da Costa, R. Bartoldus, A. E. Barton, P. Bartos, A. Basalaev, A. Bassalat, R. L. Bates, S. J. Batista, J. R. Batley, M. Battaglia, M. Bauce, F. Bauer, H. S. Bawa, J. B. Beacham, M. D. Beattie, T. Beau, P. H. Beauchemin, P. Bechtle, H. P. Beck, H. C. Beck, K. Becker, M. Becker, M. Beckingham, C. Becot, A. J. Beddall, A. Beddall, V. A. Bednyakov, M. Bedognetti, C. P. Bee, T. A. Beermann, M. Begalli, M. Begel, J. K. Behr, A. S. Bell, G. Bella, L. Bellagamba, A. Bellerive, M. Bellomo, K. Belotskiy, O. Beltramello, N. L. Belyaev, O. Benary, D. Benchekroun, M. Bender, K. Bendtz, N. Benekos, Y. Benhammou, E. Benhar Noccioli, J. Benitez, D. P. Benjamin, M. Benoit, J. R. Bensinger, S. Bentvelsen, L. Beresford, M. Beretta, D. Berge, E. Bergeaas Kuutmann, N. Berger, J. Beringer, S. Berlendis, N. R. Bernard, G. Bernardi, C. Bernius, F. U. Bernlochner, T. Berry, P. Berta, C. Bertella, G. Bertoli, F. Bertolucci, I. A. Bertram, C. Bertsche, D. Bertsche, G. J. Besjes, O. Bessidskaia Bylund, M. Bessner, N. Besson, C. Betancourt, A. Bethani, S. Bethke, A. J. Bevan, J. Beyer, R. M. Bianchi, O. Biebel, D. Biedermann, R. Bielski, K. Bierwagen, N. V. Biesuz, M. Biglietti, T. R. V. Billoud, H. Bilokon, M. Bindi, A. Bingul, C. Bini, S. Biondi, T. Bisanz, C. Bittrich, D. M. Bjergaard, C. W. Black, J. E. Black, K. M. Black, R. E. Blair, T. Blazek, I. Bloch, C. Blocker, A. Blue, W. Blum, U. Blumenschein, S. Blunier, G. J. Bobbink, V. S. Bobrovnikov, S. S. Bocchetta, A. Bocci, C. Bock, M. Boehler, D. Boerner, D. Bogavac, A. G. Bogdanchikov, C. Bohm, V. Boisvert, P. Bokan, T. Bold, A. S. Boldyrev, A. E. Bolz, M. Bomben, M. Bona, M. Boonekamp, A. Borisov, G. Borissov, J. Bortfeldt, D. Bortoletto, V. Bortolotto, D. Boscherini, M. Bosman, J. D. Bossio Sola, J. Boudreau, J. Bouffard, E. V. Bouhova-Thacker, D. Boumediene, C. Bourdarios, S. K. Boutle, A. Boveia, J. Boyd, I. R. Boyko, J. Bracinik, A. Brandt, G. Brandt, O. Brandt, U. Bratzler, B. Brau, J. E. Brau, W. D. Breaden Madden, K. Brendlinger, A. J. Brennan, L. Brenner, R. Brenner, S. Bressler, D. L. Briglin, T. M. Bristow, D. Britton, D. Britzger, F. M. Brochu, I. Brock, R. Brock, G. Brooijmans, T. Brooks, W. K. Brooks, J. Brosamer, E. Brost, J. H Broughton, P. A. Bruckman de Renstrom, D. Bruncko, A. Bruni, G. Bruni, L. S. Bruni, BH Brunt, M. Bruschi, N. Bruscino, P. Bryant, L. Bryngemark, T. Buanes, Q. Buat, P. Buchholz, A. G. Buckley, I. A. Budagov, F. Buehrer, M. K. Bugge, O. Bulekov, D. Bullock, T. J. Burch, S. Burdin, C. D. Burgard, A. M. Burger, B. Burghgrave, K. Burka, S. Burke, I. Burmeister, J. T. P. Burr, E. Busato, D. Büscher, V. Büscher, P. Bussey, J. M. Butler, C. M. Buttar, J. M. Butterworth, P. Butti, W. Buttinger, A. Buzatu, A. R. Buzykaev, S. Cabrera Urbán, D. Caforio, V. M. Cairo, O. Cakir, N. Calace, P. Calafiura, A. Calandri, G. Calderini. Measurement of the \( t\overline{t}\gamma \) production cross section in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Journal of High Energy Physics, 2017, 86, DOI: 10.1007/JHEP11(2017)086