Explicit bounds of unknown function of some new weakly singular retarded integral inequalities for discontinuous functions and their applications

Journal of Inequalities and Applications, Nov 2017

The purpose of the present paper is to establish some new retarded weakly singular integral inequalities of Gronwall-Bellman type for discontinuous functions, which generalize some known weakly singular and impulsive integral inequalities. The inequalities given here can be used in the analysis of the qualitative properties of certain classes of singular differential equations and singular impulsive equations.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://journalofinequalitiesandapplications.springeropen.com/track/pdf/10.1186/s13660-017-1563-0?site=journalofinequalitiesandapplications.springeropen.com

Explicit bounds of unknown function of some new weakly singular retarded integral inequalities for discontinuous functions and their applications

Li and Wang Journal of Inequalities and Applications Explicit bounds of unknown function of some new weakly singular retarded integral inequalities for discontinuous functions and their applications Zizun Li 0 1 2 3 4 6 7 Wu-Sheng Wang 0 1 3 5 0 Guangxi 533000 , P.R. China 1 Statistics, Baise University , Baise 2 School of Mathematics 3 University , Chengdu, Sichuan 4 School of Mathematics , Sichuan 5 School of Mathematics and Statistics, Hechi University , Yizhou, Guangxi 546300 , P.R. China 6 School of Mathematics and Statistics, Baise University , Baise, Guangxi 533000 , P.R. China 7 School of Mathematics, Sichuan University , Chengdu, Sichuan 610064 , P.R. China The purpose of the present paper is to establish some new retarded weakly singular integral inequalities of Gronwall-Bellman type for discontinuous functions, which generalize some known weakly singular and impulsive integral inequalities. The inequalities given here can be used in the analysis of the qualitative properties of certain classes of singular differential equations and singular impulsive equations. integral inequality for discontinuous function; retarded; weakly singular - explicit bounds; singular integral equation 1 Introduction Being an important tool in the study of qualitative properties of solutions of differential equations and integral equations, various generalizations of Gronwall-Bellman integral inequality and their applications have attracted great interest of many mathematicians (such as [–] and the references therein). Gronwall [] and Bellman [] established the integral inequality for some constant c ≥ , obtained the estimation of an unknown function, Abdeldaim [] discussed the following nonlinear integral inequality: u(t) ≤ c + f (s)u(s) ds, t ∈ [a, b], u(t) ≤ c exp f (s) ds , t ∈ [a, b]. α(t)  s s f (s) u–p(s) + g(τ )uq(τ ) dτ p ∈ [, ), f (s) u(s) + g(τ )u(τ ) dτ ds, p ∈ [, ). p p ds, Usually, this type integral inequalities have regular or continuous integral kernels, but some problems of theory and practicality require us to solve integral inequalities with singular kernels. For example, to prove a global existence and an exponential decay result for a parabolic Cauchy problem. Henry [] investigated the following linear singular integral inequality:  t u(t) ≤ a + b (t – s)β–u(s) ds. Sano and Kunimatsu[] generalized Henry’s type inequality to  t  t  t  t  t  ≤ u(t) ≤ c + ctα– + c u(s) ds + c (t – s)β–u(s) ds, u(t) ≤ a(t) + b(t) (t – s)β–u(s) ds, and gave a sufficient condition for stabilization of semilinear parabolic distributed systems. Ye et al. [] discussed the linear singular integral inequality and they used it to study the dependence of the solution and the initial condition to a certain fractional differential equation with Riemann-Liouville fractional derivatives. All inequalities of this type are proved by an iteration argument and the estimation formulas are expressed by a complicated power series which is sometimes not very convenient for applications. To avoid the weakness, Medveď [] presented a new method to solve integral inequalities of Henry-Gronwall type, then he got the explicit bounds with a quite simple formula, similar to the classic Gronwall-Bellman inequalities. Furthermore, he also obtained global solutions of the semilinear evolutions in []. In , Ma and Pečarić [] used the modification of Medveď ’s method to study a new weakly singular integral inequality, t tβ – sβ γ –sξ–f (s)uq(s) ds, t ∈ [, +∞). Besides the results mentioned above, various investigators have discovered many useful and new weakly singular integral inequalities, mainly inspired by their applications in various branches of fractional differential equations (see [, –] and the references therein). In analyzing the impulsive phenomenon of a physical system governed by certain differential and integral equations, by estimating the unknown function in the integral inequality of the discontinuous functions, Some properties of the solution of some impulsive differential equations can be studied. These inequalities and their various linear and nonlinear generalizations are crucial in the discussion of the existence, uniqueness, boundedness, stability, and other qualitative properties of solutions of differential and integral equations (see [, , –] and the references therein). Tatar [] discussed the following class of integral inequalities: <tk<t u(t) ≤ ϕ(t), t ∈ [–τ , ], τ > , where ki(t, s) = (t – s)βi–sγi Fi(s), i = , . Iovane [] studied the following discontinuous function integral inequality: t<ti<t where w(u) is monotone decreasing continuous function defined on [, ∞), and w(u) >  when u > . Liu et al. [] investigated the impulsive integral inequality with delay f (s)uq(s) + h(s)ur σ (s) ds + βium(ti – ), ∀t ≥ t, up(t) ≤ a(t) + + where u(t), a(t) and gi(t), bj(t), cj(t) ( ≤ i ≤ N ,  ≤ j ≤ L) are positive and continuous functions on [t, ∞), and cj(t) are nondecreasing functions on [t, ∞), and φi(t), wj(t) are continuous functions on [t, ∞) and t ≤ φi(t) ≤ t, t ≤ wj(t) ≤ t. However, in certain situations, such as some classes of delay impulsive differential equations and delay impulsive integral equations, it is desirable to find some new delay impulsive inequalities, in order to achieve a diversity of desired goals. In this paper, we discuss a class of retarded integral inequalities with weak singularity for discontinuous functions, Let α(t) be a continuous, differentiable and increasing function on [t, +∞) with α(t) ≤ t, α(t) = t, then which generalize the inequality () in [] to the weakly singular integral inequality, and () in [] to the retarded inequality. We use the modification of Medveď ’s method to obtain the explicit estimations of the unknown function in the inequality (), and we use the analysis technique to get the explicit estimations of the unknown function in the inequalities () and (). Finally, we give two examples to illustrate applications of our results. 2 Main results Throughout this paper, R denotes the set of real numbers and R+ = [, ∞) is the given subset of R, and C(M, S) denotes the class of all continuous functions defined on set M with range in the set S. The following lemmas are very useful in the procedures of our proof in our main results. Lemma  Suppose that f (x) and g(x) are nonnegative and continuous functions on [c, d]. Let p > , q + p = . Then c d α(t) α(t) f (s)g(s) ds ≤ c d α(t) α(t) () Proof We prove the inequality (). Using the inequality (), we obtain f (s)g(s) ds = f α(s) g α(s) α (s) ds = f α(s) α (s) /pg α(s) α (s) /q ds ≤ = t t t t α(t) α(t) f p α(s) α (s) ds Lemma  ([, ]) Let β, γ , ξ and p be positive constants. Then t tβ – sβ p(γ –)sp(ξ–) ds = tβθ B p(ξ –β) +  , p(γ – ) +  , t ∈ [, +∞). Let α(t) be a continuous, differentiable and increasing function on [t, +∞) with α(t) ≤ t, α(t) = t, then α(t) α(t) αβ (t) – sβ p(γ –)sp(ξ–) ds ≤ αθβ(t) B p(ξ –β) +  , p(γ – ) +  , t ∈ [, +∞), where B[x, y] =  sx–( – s)y– ds (x > , y > ) is the well-known beta-function and θ = p[β(γ – ) + ξ – ] + . Suppose that the positive constants β, γ , ξ , p and p satisfy conditions: () if β ∈ (, ], γ ∈ (/, ) and ξ ≥ / – γ , p = /γ ; () if β ∈ (, ], γ ∈ (, /] and ξ > ( – γ )/( – γ ), p = ( + γ )/( + γ ), then B pi(ξ –β) +  , pi(γ – ) +  ∈ [, +∞), and θi = pi[β(γ – ) + ξ – ] +  ≥  are valid for i = , . Lemma  Let u(t), a(t), b(t), h(t) ∈ C(R+, R+), α(t) be a continuous, differentiable and increasing function on R+ with α(t) ≤ t, α() = . If u(t) satisfies the following inequality: Then where Proof Define a function v(t) on R+ by v(t) = e α(t) h(s)u(s) ds,  we have v() = . Differentiating v(t) with respect to t and using () and (), we have Integrating both sides of the inequality () from  to t, since v() =  we get v(t) ≤  t From () and (), we obtain α (s)h α(s) a α(s) e α(s) ds = h(s)a(s)e(s) ds.  α(t)  α(t)  h(s)u(s) ds ≤ e(α(t))  α(t) h(s)a(s)e(s) ds. Substituting the inequality () into () we get the required estimation (). The proof is completed. Lemma  Let a ≥ , p ≥ q ≥  and p = , then a pq ≤ pq a + p –p q . a pq ≤ pq K (q–p)/pa + p –p q K q/p, for any K > . Let K = , we get (). Proof If q = , the inequality above is obviously valid. On the other hand, if q > , let δ = q/p, then δ ≤ , by [], [] (Lemma .), we obtain Theorem  Let a(t), f(t), f(t), f(t) ∈ C(R+, R+), and a(t) is a nondecreasing function, and let α(t) be a continuous, differentiable and increasing function on R+ with α(t) ≤ t, α() = . Let β, γ , ξ be positive constants. Suppose that u(t) satisfies the inequality (). () If β ∈ (, ], γ ∈ (/, ) and ξ ≥ / – γ , we have () If β ∈ (, ], γ ∈ (, /] and ξ > ( – γ )/( – γ ), we have w(t) ≤ a˜ (t) + b˜(t) e˜(α(t))  α(t) h˜ (s)a˜ (s)e˜(s) ds , t ∈ R+, +γγ () γ  a˜ (t) =  –γ a –γ (t), ,  t , where where e˜(t) = exp – Proof If β ∈ (, ], γ ∈ (/, ) and ξ ≥ / – γ , let if β ∈ (, ], γ ∈ (, /] and ξ > ( – γ )/( – γ ), let ( + γ ) p = ( + γ ) , q = ( + γ ) γ , then  +  = , pi qi i = , . Using Hölder’s inequality in Lemma  applied to (), we have u(t) ≤ a(t) + α(t) αβ (t) – sβ pi(γ –)spi(ξ –) ds /pi  α(t) fqi (s)uqi (s) ds /qi  α(t) αβ (t) – sβ pi(γ –)spi(ξ –) ds /pi   α(t) s f(s)  f(τ )u(τ ) dτ qi ds /qi . () qi /qi ds α(t) αβ (t) – sβ pi(γ –)spi(ξ –) ds /pi  α(t) αβ (t) – sβ pi(γ –)spi(ξ –) ds /pi  α(t) fqi (s)uqi (s) ds /qi × α(t) f(s) s f(τ )u(τ ) dτ qi ds /qi . Then z(t) is a nondecreasing function, and u(t) ≤ z(t), from (), we have z(t) ≤ a(t) + α(t) αβ (t) – sβ pi(γ –)spi(ξ –) ds /pi α(t) fqi (s)zqi (s) ds /qi    α(t) αβ (t) – sβ pi(γ –)spi(ξ –) ds /pi  α(t) αβ (t) – sβ pi(γ –)spi(ξ –) ds /pi  α(t) αβ (t) – sβ pi(γ –)spi(ξ –) ds /pi f(s) s f(τ )z(τ ) dτ α(t) fqi (s)zqi (s) ds /qi Set z(t) = a(t) + +  + × + + α(t) fqi (s)zqi (s) ds + qi–   α(t) αβ (t) – sβ pi(γ –)spi(ξ –) ds qi/pi  × α(t) f(s) s f(τ ) dτ qi zqi (s) ds. Using Lemma , the inequality () can be restated as zqi (t) ≤ qi–aqi (t) + qi– Miαθi (t) qi/pi × α(t) fqi (s) + f(s) s for t ∈ R+, where Theorem  Let u(t) is a nonnegative piecewise continuous function with discontinuous of the first kind in the points ti (t < t < t < · · · , limi→∞ ti = ∞), a(t), f (t) ∈ C(R+, R+), a(t) ≥ , and let α(t) be a continuous, differentiable and increasing function on [t, +∞) with α(t) ≤ t, α(ti) = ti, i = , , , . . . . Let p, β , γ be positive constants, βi ∈ [, ∞). If u(t) satisfies the inequality (), then we have , s t , + βju(tj – ), Proof Firstly, we consider the case t ∈ [t, t), denoting v(t) = a(t) + α(t) t then v(t) is a nonnegative and nondecreasing continuous function, and u(t) ≤ v(t), v(t) = a(t). Differentiating () with respect to t, we have v (t) = a (t) + α (t) tβ – αβ (t) γ –f α(t) u α(t) u α(t) + ≤ a (t) + α (t) tβ – αβ (t) γ –f α(t) v α(t) v α(t) + α(t) t p then (t) is a nonnegative and nondecreasing function, and (t) = a(t), since a(t) ≥ , we can conclude that v(t) ≤ (t), differentiating (), from (), we obtain + α (t)g α(t) (t) = v α(t) v α(t) α (t) + α (t)g α(t) v α(t) ≤  α(t) α (t) a (t) + α (t) tβ – αβ (t) γ –f α(t) α(t) p(t) ≤  (t)α (t) a (t) + α (t) tβ – αβ (t) γ –f α(t) (t) p(t) From (), we have –(p+) (t) ≤ –(p+)(t) α (t)a (t) + α (t)g α(t) +  α (t)  tβ – αβ (t) γ –f α(t) . Let η(t) = –(p+)(t), then η (t) = –(p + ) –(p+) (t), () can be restated as η (t) + (p + )η(t) α (t)a (t) + α (t)g α(t) ≥ –(p + ) α (t)  tβ – αβ (t) γ –f α(t) . () () () () () () () η(t) exp (p + ) a α–(s) + g(s) ds ≥ –(p + ) α (t)  tβ – αβ (t) γ – f α(t) × exp (p + ) a α–(s) + g(s) ds , integrating both sides of () from t to t, we obtain η(t) exp (p + ) a α–(s) + g(s) ds – η(t) ≥ –(p + ) α (t)  tβ – αβ (t) γ – f α(t) × exp (p + ) a α–(s) + g(s) ds ≥ α(t) t –(p + ) tβ – sβ (t) γ – f (s) × exp (p + ) a α–(τ ) + g(τ ) dτ ds, p(t) ≤ (t) = α(t) Multiplying by exp((p + ) tα(t)(a (α–(s)) + g(s)) ds) on both sides of (), we have () () () () () () () since η(t) = –(p+)(t) = a–(p+)(t), denoting g(τ )) dτ ), from (), we have (t) = exp((p + ) tα(s)(a (α–(τ )) + η(t) ≥ α(t)(tβ – sβ )γ –f (s) (s)  – a(p+)(t)(p + ) t a(p+)(t) (t) , by η(t) = –(p+)(t), from (), we have p p+ , p p+ , a(p+)(t) (t) α(t)(tβ – sβ )γ –f (s) (s) ds  – a(p+)(t)(p + ) t α(t)(tβ – sβ )γ –f (s) ds > , setting where  – a(p+)(t)(p + ) t a(p+)(t) (t) α(t)(tβ – sβ )γ –f (s) (s) ds  – a(p+)(t)(p + ) t from (), (), () and (), we have v (t) ≤ a (t) + α (t) tβ – αβ (t) γ –f α(t) v α(t) (t). Integrating both side of () from t to t, we get t t v(t) ≤ a(t) + α (s) tβ – αβ (s) γ –f α(s) v α(s) (s) ds = a(t) + tβ – s β γ – f (s)v(s) α–(s) α (s) ds. Equation () has the same form as Lemma , and the functions of () satisfy the conditions of Theorem . Consequently, by using a similar procedure to Lemma  and Theorem , we can get the desired estimations () for t ∈ [t, t). Next, let us consider the interval [t, t), when t ∈ [t, t), () can be restated as α(t) tβ – sβ γ –f (s)u(s) u(s) + () () then (t) is a nonnegative and nondecreasing function, and Differentiating with respect to t both sides of (), we obtain (t) = A(t) + α (t) tβ – α(t)β γ –f α(t) u α(t) u α(t) + ≤ A(t) + α (t) tβ – α(t)β γ –f α(t) α(t) ×  α(t) + α(t) t p g(s) (s) ds , α(t) t p () has the same form of (), and using a similar procedure for t ∈ [t, t), we can get the desired estimations () for t ∈ [t, t). Consequently, by using a similar procedure for t ∈ [ti, ti+), we can get the desired estimations () for t ∈ [ti, ti+). Thus we complete the proof of Theorem . t ∈ [ti, ti+), i = , , , . . . , b˜(t) e˜i(α(t)) ti α(t) where M, θ are the same as in Theorem , and E(t) = a(t), t ∈ [t, t), Ei(t) = a(t) + b(t) i j= tj α(ti) β α (t) – s β γ – ξ – s m f (s) u (s) + t ∈ [ti, ti+), i = , , , . . . , b˜ (t) e˜i(α(t))  α(t) h˜ i(s)a˜ i(s)e˜i(s) ds γ +γ /p , () where M, θ are the same as in Theorem  and Ei, Ai, Bi, hi, i = , , , . . . , are the same in () of Theorem , a˜ i(t) =  +γ γ A i +γ γ θ b˜ (t) = Mα  (t) (t), Proof When t ∈ [t, t), () can be restated as ti t α(t) t p u (t) ≤ a(t) + b(t) β α (t) – s β γ – ξ – s m f (s) u (s) + g(τ )un(τ ) dτ q ds, () s t by Lemma , we obtain s t um(s) + + b(t) + b(t) α(t) t t α(t) t α(t) α(t) α(t) t t from () and (), we have By Lemma  and (), we obtain up(t) ≤ a(t) + w(t) or u(t) ≤ a(t) + w(t) /p. um(t) ≤ a(t) + w(t) m/p un(t) ≤ a(t) + w(t) n/p ≤ mp a(t) + w(t) + p –p m , ≤ np a(t) + w(t) + p –p n . Substituting the inequality () and () into () we have w(t) ≤ b(t) αβ (t) – sβ γ –sξ –( – q)f (s) ds αβ (t) – sβ γ –sξ –qf (s)um(s) ds αβ (t) – sβ γ –sξ –qf (s) g(τ )un(τ ) dτ ds, s t s s t t αβ (t) – sβ γ –sξ –qf (s) mp a(s) + w(s) + p –p m ds αβ (t) – sβ γ –sξ –qf (s) g(τ ) np a(τ ) + w(τ ) + p –p n dτ ds αβ (t) – sβ γ –sξ –f (s) ( – q) + q αβ (t) – sβ γ –sξ –qf (s) αβ (t) – sβ γ –sξ – mq f (s)w(s) ds p mp a(s) + p –p m g(τ ) np a(τ ) + p –p n ds dτ ds α(t) where A(t) = b(t) α(t) tβ – sβ γ –sξ–B(s) ds, g(t) = mpq f (t), g(t) = np g(t). ≤ b(t) αβ (t) – sβ γ –sξ–B(s) ds + b(t) α(t) tβ – sβ γ –sξ–g(s)w(s) ds αβ (t) – sβ γ –sξ–g(s) g(τ )w(τ ) dτ ds, s t s t s t q q Since () have the same form as () and the functions of () satisfy the conditions of Theorem , applying Theorem  to (), considering equation (), we can get the desired estimations () and () for t ∈ [t, t). Then, when t ∈ [t, t), () can be restated as ds α(t) t + βup(t – ) + b(t) αβ (t) – sβ γ –sξ–f (s) × um(s) + then we have t + βup(t – ), up(t) ≤ E(t) + b(t) From (), we can conclude that the estimates ()and () are valid for t ∈ [t, t). Consequently, by using a similar procedure for t ∈ [ti, ti+), we complete the proof of theorem. 3 Some applications Example  Consider the following Volterra type retarded weakly singular integral equations: α(t) t yp(t) – which arises very often in various problems, especial describing physical processes with aftereffects. Ma and Pečarić [] discussed the case α(t) = t, g(t) ≡  in (). t t where γ a˜ (t) =  –γ θ = γ β(γ – ) + ξ –  + , A(t) = ( – q) + q p h(t) + p p–  + qK q–  t g(τ )  h(τ ) + p –  dτ , p p A(t) = pq , A(t) = qK q–, A(t) = p g(t) . () If β ∈ (, ], γ ∈ (, /] and ξ > ( – γ )/( – γ ), we have y(t) ≤ h(t) + a˜ (t) + b˜ (t) e˜(α(t)) t α(t) +γγ /p h˜(s)a˜ (s)e˜(s) ds t α(t) +γ A γ (s) ds, Applying Theorem  for t ∈ [t, t) (with m = n = , a(t) = |h(t)|, b(t) = |λ|t–βδ/ (γ ), ξ = β( + δ)) to (), we obtain the desired estimations () and (). Example  Consider the following impulsive differential system: d(xd(tt)) = F(t, x), t = ti, t ∈ [t, ∞), (x)|t=ti = βix(ti – ), x(t) = x, F(s, x) ≤ tβ – sβ γ –f (s) x(s), t t x(t) = x + F s, x(s) ds + βix(ti – ). By using the condition (), from (), we have x(t) ≤ x + t tβ – sβ γ –f (s) x(s) ds + t Let u(t) = |x(t)|, from (), we get u(t) ≤ x + t tβ – sβ γ –f (s) u(s) ds + t βiu(ti – ). where f (t) ∈ C(R+, R+), β ∈ (, ], γ ∈ (/, ). Then the impulsive differential system () and () are equivalent to the integral equation () () () () () () By Lemma , we have tt tβ – sβ γ –f (s)  u(s) +  ds + tt tβ – sβ γ – f (s) u(s) ds + tt tβ – sβ γ – f (s) ds + t<ti<t βiu(ti – ) tt tβ – sβ γ – f (s) u(s) ds + , where M, θ are the same as in Theorem , and αβ (t) – sβ γ –f (s) u(s) ds E(t) = a(t), t ∈ [t, t), Ei(t) = a(t) + i ti j= tj + i βju(tj – ), t ∈ [ti, ti+), i = , , . . . , j= γ  a˜ i(t) =  –γ Ai–γ (t), i = , , , . . . , t tβ – sβ γ –Bi(s) ds, i = , , , . . . , Ai(t) = ti Bi(t) = f (t)  +  Ei(t) , i = , , , . . . , γ b˜ (t) = Mαθ (t) –γ , g(t) =  f (t). 4 Conclusion In this paper, we generalized the weakly singular integral inequality. The first inequality was a generally weak singular type, the second inequality was a like-weakly singular type with discontinuous functions, the third inequality was a type of weakly singular integral inequality with impulsive. We used analytical methods, reducing the inequality with the known results in the lemma, and the estimations of the upper bound of the unknown functions were given. The results were applied to the weakly singular integral equation and the impulsive differential system. Acknowledgements The authors are very grateful to the editor and the referees for their careful comments and valuable suggestions on this paper. This work is supported by the Natural Science Foundation of China (11561019), Guangxi Natural Science Foundation (2016GXNSFAA380090) and (2016GXNSFAA380125). Competing interests The authors declare that they have no competing interests. Authors’ contributions LZZ organized and wrote this paper. WWS examined all the steps of the proofs in this research and gave some advice. All authors read and approved the final manuscript. Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. 1. Abdeldaim , A , Yakout, M: On some new integral inequalities of Gronwall-Bellman-Pachpatte type . Appl. Math. Comput . 217 , 7887 - 7899 ( 2011 ) 2. Agarwal , RP: Difference Equations and Inequalities. Dekker, New York ( 1993 ) 3. Agarwal , RP , Deng, SF , Zhang, WN: Generalization of a retarded Gronwall-like inequality and its applications . Appl. Math. Comput . 165 , 599 - 612 ( 2005 ) 4. Bainov , DD , Simeonov, P : Integral Inequalities and Applications. Kluwer Academic, Dordrecht ( 1992 ) 5. Bellman , R: The stability of solutions of linear differential equations . Duke Math. J . 10 , 643 - 647 ( 1943 ) 6. Cheng, KL, Guo, C , Tang, M: Some nonlinear Gronwall-Bellman-Gamidov integral inequalities and their weakly singular analogues with applications . Abstr. Appl. Anal . 2014 , Article ID 562691 ( 2014 ) 7. Cheung , WS: Some new nonlinear inequalities and applications to boundary value problems . Nonlinear Anal . 64 , 2112 - 2128 ( 2006 ) 8. Deng , SF , Prather, C: Generalization of an impulsive nonlinear singular Gronwall-Bihari inequality with delay . J. Inequal. Pure Appl. Math. 9, Article 34 ( 2008 ) 9. El-Owaidy , H , Ragab, AA , Abuelela, W , El-Deeb, AA: On some new nonlinear integral inequalities of Gronwall-Bellman type . Kyungpook Math. J . 54 , 555 - 575 ( 2014 ) 10. Gllo , A , Piccirilo, AM : About some new generalizations of Bellman-Bihari results for integro-functional inequalities with discontinuous functions and applications . Nonlinear Anal . 71 , e2276 - e2287 ( 2009 ) 11. Gronwall , TH: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations . Ann. Math. 20 , 292 - 296 ( 1919 ) 12. Abdeldaim , A : Nonlinear retarded integral inequalities of Gronwall-Bellman type and applications . J. Math. Inequal . 10 ( 1 ), 285 - 299 ( 2016 ) 13. Henry , D : Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. , vol. 840 . Springer, Berlin ( 1981 ) 14. Sano , H , Kunimatsu, N: Modified Gronwall's inequality and its application to stabilization problem for semilinear parabolic systems . Syst. Control Lett . 22 , 145 - 156 ( 1994 ) 15. Ye , HP , Gao, JM , Ding, YS: A generalized Gronwall inequality and its application to a fractional differential equation . J. Math. Anal. Appl . 328 , 1075 - 1081 ( 2007 ) 16. Medved', M: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions . J. Math. Anal. Appl . 214 , 349 - 366 ( 1997 ) 17. Medved', M: Integral inequalities and global solutions of semilinear evolution equations . J. Math. Anal. Appl . 267 , 643 - 650 ( 2002 ) 18. Ma, QH, Pecˇaric´, J: Some new explicit bounds for weakly singular integral inequalities with applications to fractional differential and integral equations . J. Math. Anal. Appl . 341 ( 2 ), 894 - 905 ( 2008 ) 19. Li , WN, Han, MA , Meng, FW: Some new delay integral inequalities and their applications . J. Comput. Appl . Math. 180 , 191 - 200 ( 2005 ) 20. Lipovan , O: A retarded Gronwall-like inequality and its applications . J. Math. Anal. Appl . 252 , 389 - 401 ( 2000 ) 21. Ma, QH , Yang, EH: Estimations on solutions of some weakly singular Volterra integral inequalities . Acta Math. Appl. Sin . 25 , 505 - 515 ( 2002 ) 22. Mazouzi , S , Tatar, N: New bounds for solutions of a singular integro-differential inequality . Math. Inequal. Appl . 13 ( 2 ), 427 - 435 ( 2010 ) 23. Medved', M: Nonlinear singular integral inequalities for functions in two and n independent variables . J. Inequal. Appl . 5 ( 3 ), 287 - 308 ( 2000 ) 24. Pachpatte , BG: Inequalities for Differential and Integral Equations . Academic Press, New York ( 1998 ) 25. Tatar , NE: An impulsive nonlinear singular version of the Gronwall-Bihari inequality . J. Inequal. Appl . 2006 , Article ID 84561 ( 2006 ) 26. Wang , H , Zheng, KL: Some nonlinear weakly singular integral inequalities with two variables and applications . J. Inequal. Appl . 2010 , Article ID 345701 ( 2010 ) 27. Willett , D: Nonlinear vector integral equations as contraction mappings . Arch. Ration. Mech. Anal . 15 , 79 - 86 ( 1964 ) 28. Iovane , G: Some new integral inequalities of Bellman-Bihari type with delay for discontinuous functions . Nonlinear Anal . 66 , 498 - 508 ( 2007 ) 29. Liu, XH , Zhang, LH, Agarwal, P , Wang, GT : On some new integral inequalities of Gronwall-Bellman-Bihari type with delay for discontinuous functions and their applications . Indag. Math. 27 , 1 - 10 ( 2016 ) 30. Mi, YZ , Zhong, JY : Generalization of the Bellman-Bihari type integral inequality with delay for discontinuous functions . J. Sichuan Univ. Natur. Sci. Ed . 52 , 33 - 38 ( 2015 ) 31. Mitropolskiy , YA , Iovane, G , Borysenko, SD : About a generalization of Bellman-Bihari type inequalities for discontinuous functions and their applications . Nonlinear Anal . 66 , 2140 - 2165 ( 2007 ) 32. Yan , Y: Some new Gronwall-Bellman type impulsive integral inequality and its application . J. Sichuan Normal Univ. Nat. Sci . 36 ( 4 ), 603 - 609 ( 2013 ) 33. Zheng , B: Explicit bounds derived by some new inequalities and applications in fractional integral equations . J. Inequal. Appl . 2014 , 4 ( 2014 ) 34. Zheng , ZW , Gao , X , Shao , J: Some new generalized retarded inequalities for discontinuous functions and their applications . J. Inequal. Appl . 2016 , 7 ( 2016 ) 35. Kuczma , M: An Introduction to the Theory of Functional Equations and Inequalities: Cauchy's Equation and Jensen's Inequality . University of Katowice, Katowice ( 1985 ) 36. Jiang , FC , Meng, FW : Explicit bounds on some new nonlinear integral inequalities with delay . J. Comput. Appl . Math. 205 , 479 - 486 ( 2007 )


This is a preview of a remote PDF: https://journalofinequalitiesandapplications.springeropen.com/track/pdf/10.1186/s13660-017-1563-0?site=journalofinequalitiesandapplications.springeropen.com

Zizun Li, Wu-Sheng Wang. Explicit bounds of unknown function of some new weakly singular retarded integral inequalities for discontinuous functions and their applications, Journal of Inequalities and Applications, 2017, 287, DOI: 10.1186/s13660-017-1563-0