Search for new high-mass phenomena in the dilepton final state using 36 fb−1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector

Journal of High Energy Physics, Oct 2017

Abstract A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon final states. The search uses 36.1 fb−1 of proton-proton collision data, collected at \( \sqrt{s}=13 \) TeV by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the Standard Model prediction is observed. Upper limits at 95% credibility level are set on the cross-section times branching ratio for resonances decaying into dileptons, which are converted to lower limits on the resonance mass, up to 4.1 TeV for the E6-motivated Z χ ′ . Lower limits on the qqℓℓ contact interaction scale are set between 2.4 TeV and 40 TeV, depending on the model. Open image in new window

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

Search for new high-mass phenomena in the dilepton final state using 36 fb−1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector

Received: July Search for new high-mass phenomena in the dilepton 0 Also at Department of Physics, Nanjing University , Jiangsu , China A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon collision data, collected at p nal states. The search uses 36:1 fb 1 of proton-proton Beyond Standard Model; Hadron-Hadron scattering (experiments) - HJEP10(27)8 of proton-proton collision data at with the ATLAS detector The ATLAS collaboration s = 13 TeV by the ATLAS experiment at the LHC in 2015 and 2016. No signi cant deviation from the Standard Model prediction is observed. Upper limits at 95% credibility level are set on the cross-section times branching ratio for resonances decaying into dileptons, which are converted to lower limits on the resonance mass, up to 4.1 TeV for the E6-motivated Z0 . Lower limits on the qq`` contact interaction scale are set between 2.4 TeV and 40 TeV, depending on the model. 1 Introduction 2 Theoretical models 2.1 2.2 2.3 E6-motivated Z0 models Minimal Z0 models Contact interactions 3 ATLAS detector 4 Data and Monte Carlo samples 5 Event selection 6 Background estimation 7 Systematic uncertainties 8 Event yields 9 Statistical analysis 10 Results 10.1 Z0 cross-section and mass limits 10.2 Limits on Minimal Z0 models 10.3 Generic Z0 limits 10.4 Limits on the energy scale of contact interactions 11 Conclusion A Dilepton invariant mass tables The ATLAS collaboration 1 3 data set was collected during 2015 and 2016, and corresponds to an integrated luminosity of 36.1 fb 1 . In the search for new physics carried out at hadron colliders, the study of { 1 { dilepton nal states provides excellent sensitivity to a large variety of phenomena. This experimental signature bene ts from a fully reconstructed nal state, high signal-selection e ciencies and relatively small, well-understood backgrounds, representing a powerful test for a wide range of theories beyond the Standard Model (SM). Models with extended gauge groups often feature additional U(1) symmetries with corresponding heavy spin-1 bosons. These bosons, generally referred to as Z0, would manifest as a narrow resonance through its decay, in the dilepton mass spectrum. Among these models are those inspired by Grand Uni ed Theories, which are motivated by gauge uni cation or a restoration of the left-right symmetry violated by the weak interaction. Examples considered in this article include the Z0 bosons of the E6-motivated [ 1, 2 ] theories as well state were carried out by the ATLAS and CMS collaborations [4, 5]. Using 3.2 fb 1 of pp collision data at p s = 13 TeV collected in 2015, ATLAS set a lower exclusion limit at 95% credibility level (CL) on the ZS0SM pole mass of 3.4 TeV for the combined ee and channels. Similar limits were set by CMS using the 2015 data sample. This search is also sensitive to a series of other models that predict the presence of narrow dilepton resonances. These models include the Randall-Sundrum (RS) model [6] with a warped extra dimension giving rise to spin-2 graviton excitations, the quantum black-hole model [7], the Z model [8], and the minimal walking technicolour model [9]. In order to facilitate interpretation of the results in the context of these or any other model predicting a new dilepton resonance, limits are set on the production of a generic Z0-like excess. energy. In addition to the search for narrow resonances, results for non-resonant phenomena are also reported. Such models of these phenomena include an e ective four-fermion contact interaction (CI) between two initial-state quarks and two nal-state leptons (qq``). Unlike resonance models, which require su cient energy to produce the new gauge boson, the presence of a new interaction in the non-resonant regime can be detected at a much lower The most stringent constraints from CI searches are also provided by the ATLAS and CMS collaborations [4, 10], for couplings between quarks and leptons. Using 3.2 fb 1 of pp collision data at p s = 13 TeV collected in 2015, ATLAS set lower limits on the qq`` CI scale of = 25 TeV and = 18 TeV at 95% CL for constructive and destructive interference, respectively, in the case of left-left interactions and assuming a uniform positive prior probability in 1/ 2 . Similar limits were set by CMS using the 2015 data set. Both the resonant and non-resonant models considered as the benchmark for this search are further discussed in section 2. The presented search utilises the invariant mass spectra of the observed dilepton nal states as discriminating variables. The analysis and interpretation of these spectra rely primarily on simulated samples of signal and background processes. The interpretation is performed taking into account the expected shape of di erent signals in the dilepton { 2 { mass distribution. The use of the shape of the full dilepton invariant mass distribution reduces the uncertainties in the background modelling, thereby increasing the sensitivity of this search at high masses. This article is structured as follows: section 2 covers the theoretical motivation of the models considered in this search, followed by a description of the ATLAS detector in section 3, and a summary in section 4 of the data and Monte Carlo (MC) samples used. The event selection is motivated and described in section 5, with details of the background estimation given in section 6, and an overview of the systematic uncertainty treatment given in section 7. The event yields and main kinematic distributions are presented in section 8, followed by a description of the statistical analysis in section 9, and the results in section 10. HJEP10(27)8 In the class of models based on the E6 gauge group [ 1, 2 ], the uni ed symmetry group can break to the SM in a number of di erent ways. In many of them, E6 is rst broken U(1) , with SO(10) then breaking either to SU(4) SU(2)L SU(2)R or U(1) . In the rst of these two possibilities, a Z30R coming from SU(2)R, where 3R stands for the right-handed third component of weak isospin, or a ZB0 L from the breaking of SU(4) into SU(3)C U(1)B L could exist at the TeV scale, where B (L) is the baryon (lepton) number and (B L) is the conserved quantum number. Both of these Z0 bosons appear in the Minimal Z0 models discussed in the next section. In the SU(5) case, the presence of U(1) and U(1) symmetries implies the existence of associated gauge bosons Z0 and Z0 that can mix. When SU(5) is broken down to the SM, one of the U(1) can remain unbroken down to intermediate energy scales. Therefore, the precise model is governed by a mixing angle E6 , with the new potentially observable Z0 boson de ned by Z0( E6 ) = Z0 cos E6 + Z0 sin E6 . The value of E6 speci es the Z0 boson's coupling strength to SM fermions as well as its intrinsic width. In comparison to the benchmark ZS0SM, which has a width of approximately 3% of its mass, the E6 models predict narrower Z0 signals. The Z0 considered here has a width of 0.5% of its mass, and the Z0 has a width of 1.2% of its mass [11, 12]. All other Z0 signals in this model, including Z0 , ZI0 , Z0 , and S ZN0, are de ned by speci c values of E6 ranging from 0 to , and have widths between those of the Z0 and Z0 . 2.2 Minimal Z0 models In the Minimal Z0 models [3], the phenomenology of Z0 boson production and decay is characterised by three parameters: two e ective coupling constants, gBL and gY, and the Z0 boson mass. This parameterisation encompasses Z0 bosons from many models, including the Z0 belonging to the E6-motivated model of the previous section, the Z30R in a left-right symmetric model [13, 14] and the ZB0 L of the pure (B L) model [15]. The minimal models are therefore particularly interesting for their generality, and because couplings are being directly constrained by the search. The coupling parameter gBL de nes the coupling of a new Z0 boson to the (B L) current, while the gY parameter represents the coupling { 3 { 0 cos Min sin Min q 58 sin W 1 0 bosons: ZB0 L, Z0 and Z30R. The SM weak mixing angle is denoted by W. to the weak hypercharge Y. It is convenient to refer to the ratios g~BL gBL=gZ and g~Y gY=gZ , where gZ is related to the coupling of the SM Z boson to fermions de ned by gZ = 2MZ =v. Here v = 246 GeV is the SM Higgs vacuum expectation value. To simplify further, the additional parameters 0 and Min are chosen as independent parameters with the following de nitions: g~BL = 0 cos Min, g~Y = 0 sin Min. The 0 parameter measures the strength of the Z0 boson coupling relative to that of the SM Z boson, while Min determines the mixing between the generators of the (B L) and weak hypercharge Y gauge groups. Speci c values of 0 and Min correspond to Z0 bosons in various models, as is shown in table 1 for the three cases mentioned in this section. For the Minimal Z0 models, the width depends on 0 and Min, and the Z0 interferes with the SM Z= process. For example, taking the 3R and B L models investigated in this search, the width varies from less than 1% up to 12.8% and 39.5% respectively, for the 0 range considered. The branching fraction to leptons is the same as for the other Z0 models considered in this search. Couplings to hypothetical right-handed neutrinos, the Higgs boson, and to W boson pairs are not considered. Previous limits on the Z0 mass versus 0 were set by the ATLAS experiment. For 0 = 0:2, the range of Z0 mass limits at 95% CL corresponding to Min 2 [0; ] is 1.11 TeV to 2.10 TeV [16]. 2.3 Contact interactions Some models of physics beyond the SM result in non-resonant deviations from the predicted SM dilepton mass spectrum. Compositeness models motivated by the repeated pattern of quark and lepton generations predict new interactions involving their constituents. These interactions may be represented as a contact interaction between initial-state quarks and nal-state leptons [ 17, 18 ]. Other models producing non-resonant e ects are models with large extra dimensions [ 19 ] motivated by the hierarchy problem. This search is sensitive to non-resonant new physics in these scenarios; however, constraints on these models are not The following four-fermion CI Lagrangian [ 17, 18 ] is used to describe a new interaction evaluated in this article. in the process qq ! `+` : L = g 2 2 [ LL (qL qL) (`L `L) + RR(qR qR) (`R `R) + LR(qL qL) (`R `R) + RL(qR qR) (`L `L)] ; { 4 { where g is a coupling constant set to be p 4 by convention, is the CI scale, and qL,R and `L,R are left-handed and right-handed quark and lepton elds, respectively. The symbol denotes the gamma matrices, and the parameters ij , where i and j are L or R (left or right), de ne the chiral structure of the new interaction. Di erent chiral structures are investigated here, with the left-right (right-left) model obtained by setting LR = 1 ( RL = 1) and all other parameters to zero. Likewise, the left-left and right-right models are obtained by setting the corresponding parameters to 1, and the others to zero. The sign of ij determines whether the interference between the SM Drell-Yan (DY) qq ! Z= process and the CI process is constructive ( ij = 1) or destructive ( ij = +1). ! `+` 3 ATLAS detector The ATLAS experiment [20, 21] at the LHC is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and a near 4 coverage in solid angle.1 It consists of an inner detector for tracking surrounded by a thin superconducting solenoid providing a 2 T axial magnetic eld, electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner detector (ID) covers the pseudorapidity range j j < 2:5. It consists of silicon pixel, silicon microstrip, and transition-radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A hadronic (steel/scintillator-tile) calorimeter covers the central pseudorapidity range (j j < 1:7). The endcap and forward regions are instrumented with LAr calorimeters for EM and hadronic energy measurements up to j j = 4:9. The total thickness of the EM calorimeter is more than twenty radiation lengths. The muon spectrometer (MS) surrounds the calorimeters and is based on three large superconducting air-core toroids with eight coils each. The eld integral of the toroids ranges between 2.0 and 6.0 T m for most of the detector. The MS includes a system of precision tracking chambers and fast detectors for triggering. A dedicated trigger system is used to select events. The rst-level trigger is implemented in hardware and uses the calorimeter and muon detectors to reduce the accepted rate to below 100 kHz. This is followed by a software-based trigger that reduces the accepted event rate to 1 kHz on average [22]. 4 Data and Monte Carlo samples This analysis uses data collected at the LHC during 2015 and 2016 pp collisions at p s = 13 TeV. The total integrated luminosity corresponds to 36.1 fb 1, considering the periods of data-taking with all sub-detectors functioning nominally. The event quality is also checked to remove events which contain noise bursts or coherent noise in the calorimeters. Modelling of the various background sources primarily relies on MC simulation. The dominant background contribution arises from the DY process, which was simulated using 1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r; ) are used in the transverse plane, being the azimuthal angle around the z-axis. The pseudorapidity is de ned in terms of the polar angle as = ln tan( =2). Angular distance is measured in units of R p( )2 + ( )2. { 5 { HJEP10(27)8 tions ( set [31]. the next-to-leading-order (NLO) Powheg Box [23] event generator, implementing the CT10 [24] parton distribution function (PDF), in conjunction with Pythia 8.186 [25] for event showering, and the ATLAS AZNLO set of tuned parameters [26]. A more detailed description of this process is provided in ref. [27]. The DY event yields are corrected with a rescaling that depends on the dilepton invariant mass from NLO to next-to-next-toleading order (NNLO) in the strong coupling constant, computed with VRAP 0.9 [28] and the CT14NNLO PDF set [29]. The NNLO quantum chromodynamic (QCD) corrections are a factor of 0.98 at a dilepton invariant mass (m``) of 3 TeV. Mass-dependent electroweak (EW) corrections were computed at NLO with Mcsanc 1.20 [30]. The NLO EW corrections are a factor of 0.86 at m`` = 3 TeV. Those include photon-induced contribu! `` via t- and u-channel processes) computed with the MRST2004QED PDF Other backgrounds originate from top-quark [32] and diboson (W W , W Z, ZZ) [33] production. The diboson processes were simulated using Sherpa 2.2.1 [34] with the CT10 PDF. The tt and single-top-quark MC samples were simulated using the Powheg Box generator with the CT10 PDF, and are normalised to a cross-section as calculated with the Top++ 2.0 program [35], which is accurate to NNLO in perturbative QCD, including resummation of next-to-next-to-leading logarithmic soft gluon terms. Background processes involving W and Z bosons decaying into lepton(s) were found to have a negligible contribution, and are not included. In the case of the dielectron channel, multi-jet and W +jets processes (which contribute due to the misidenti cation of jets as electrons) are estimated using a data-driven method, described in section 6. Signal processes were produced at leading-order (LO) using Pythia 8.186 with the NNPDF23LO PDF set [36] and the ATLAS A14 set of tuned parameters [37] for event generation, parton showering and hadronisation. Interference e ects (with DY production) are not included for the SSM and E6 model Z0 signal due to large model dependence, but are included for the CI signal and for the Minimal model approach. Higher-order QCD corrections for the signal were computed with the same methodology as for the DY background. EW corrections were not applied to the Z0 signal samples also due to the large model dependence. However, the EW corrections are applied to the CI signal samples, because interference e ects are included. The detector response is simulated with Geant 4 [ 38 ], and the events are processed with the same reconstruction software [ 39 ] as used for the data. Furthermore, the distribution of the number of additional simulated pp collisions in the same or neighbouring beam crossings (pile-up) is accounted for by overlaying minimum-bias events simulated with Pythia 8.186 using the ATLAS A2 set of tuned parameters [37] and the MSTW2008LO PDF set [40], reweighting the MC simulation to match the distribution observed in the data. 5 Event selection Dilepton candidates are selected in the data and simulated events by requiring at least one pair of reconstructed same- avour lepton candidates (electrons or muons) and at least one { 6 { reconstructed pp interaction vertex, with the primary vertex de ned as the one with the highest sum of track transverse momenta (pT) squared. Electron candidates are identi ed in the central region of the ATLAS detector (j j < 2:47) by combining calorimetric and tracking information in a likelihood discriminant with four operating points: Very Loose, Loose, Medium and Tight each with progressively higher threshold for the discriminant, and stronger background rejection, as described in ref. [41]. The transition region between the central and forward regions of the calorimeters, in the range 1.37 j j 1.52, exhibits poorer energy resolution and is therefore excluded. Electron candidates are required to have transverse energy (ET) greater than 30 GeV, and a track consistent with the primary vertex both along the beamline and in the transverse plane. The Medium working point of the likelihood discrimination is used to select electron candidates while the Very Loose and Loose working points are used in the data-driven background estimation described in section 6. In addition to the likelihood discriminant, selection criteria based on track quality are applied. The selection e ciency is approximately 96% for electrons with ET between 30 GeV and 500 GeV, and decreases to approximately 95% for electrons with ET = 1.5 TeV. The selection e ciency is evaluated in the data using a tag-and-probe method [42] up to ET of 500 GeV and the uncertainties due to the modelling of the shower shape variables are estimated for electrons with higher ET using calibrated up to ET of 1 TeV using data collected at p s = 8 TeV and p MC events, as described in section 7. The electron energy scale and resolution have been s = 13 TeV [43]. The energy resolution extrapolated for high-ET electrons (greater than 1 TeV) is approximately 1%. Muon candidate tracks are, at rst, reconstructed independently in the ID and the MS [44]. The two tracks are then used as input to a combined t (for pT less than 300 GeV) or to a statistical combination (for pT greater than 300 GeV). The combined t takes into account the energy loss in the calorimeter and multiple-scattering e ects. The statistical combination for high transverse momenta is performed to mitigate the e ects of relative ID and MS misalignments. In order to optimise momentum resolution, muon tracks are required to have at least three hits in each of three precision chambers in the MS and not to traverse regions of the MS which are poorly aligned. This requirement reduces the muon reconstruction e ciency by about 20% for muons with a pT greater than 1.5 TeV. Furthermore, muon candidates in the overlap of the MS barrel and endcap region (1:01 < j j < 1:10) are rejected due to the potential relative misalignment between barrel and endcap. Measurements of the ratio of charge to momentum (q=p) performed independently in the ID and MS must agree within seven standard deviations, calculated from the sum in quadrature of the ID and MS momentum uncertainties. Finally, in order to reject events that contain a muon with poor track resolution in the MS, due to a low magnetic eld integral and other e ects, an event veto based on the MS track momentum measurement uncertainty is also applied. Muons are required to have pT greater than 30 GeV, j j < 2:5, and to be consistent with the primary vertex both along the beamline and in the transverse plane. To further suppress background from misidenti ed jets as well as from light- avour and heavy- avour hadron decays inside jets, lepton candidates are required to satisfy { 7 { calorimeter-based (only for electrons) and track-based (for both electrons and muons) isolation criteria. The calorimeter-based isolation relies on the ratio of the ET deposited in a cone of size R = 0:2, centered at the electron cluster barycentre, to the total ET measured for the electron. The track-based isolation relies on the ratio of the summed scalar pT of tracks within a variable-cone of size R = 10 GeV=pT to the pT of the track associated with the candidate lepton. This variable-cone has no minimum size, meaning that the track-based isolation requirement e ectively vanishes at very high lepton pT. The tracks are required to have pT > 1 GeV, j j < 2:5, meet all track quality criteria, and originate from the primary vertex. In all cases the contribution to the ET or pT ascribed to the lepton candidate is removed from the isolation cone. The isolation criteria, applied to both leptons, have a xed e ciency of 99% over the full range of lepton momenta. Calibration corrections are applied to electron (muon) candidates to match energy (momentum) scale and resolution between data and simulation [44, 45]. Triggers were chosen to maximise the overall signal e ciency. In the dielectron channel, a two-electron trigger based on the Loose identi cation criteria with an ET threshold of 17 GeV for each electron is used. Events in the dimuon channel are required to pass at least one of two single-muon triggers with pT thresholds of 26 GeV and 50 GeV, with the former also requiring the muon to be isolated. These triggers select events from a simulated sample of Z0 bosons with a pole mass of 3 TeV with an e ciency of approximately 86% and 91% for the dielectron and dimuon channels, respectively. Data-derived corrections are applied in the samples to match the trigger, reconstruction and isolation e ciencies between data and MC simulation. For each event with at least two same- avour leptons, the dilepton candidate is built. If more than two electrons (muons) are found, the ones with the highest ET (pT) are chosen. In the muon channel, only opposite-charge candidates are retained. This requirement is not applied in the electron channel due to a higher chance of charge misidenti cation for high-ET electrons. There is no explicit overlap removal between the dielectron and dimuon channel, but a negligible number of common events at low dilepton masses enter the combination. Representative values of the total acceptance times e ciency for a Z0 boson with a pole mass of 3 TeV are 71% in the dielectron channel and 40% in the dimuon channel. 6 Background estimation The backgrounds from processes including two real leptons in the nal state (DY, tt, single top quark, W W , W Z, and ZZ production) are modelled using the MC samples described in section 4. In the mass range 120 GeV < m`` < 1 TeV the corrected DY background is smoothed to remove statistical uctuations due to the limited MC sample size compared to the large integrated luminosity of the data, by tting the spectrum and using the resulting tted function to set the expected event yields in that mass region. The chosen t function consists of a relativistic Breit-Wigner function with mean and width xed to MZ and Z respectively [46], multiplied by an analytic function taking into account detector resolution, selection e ciency, parton distribution function e ects, and contributions from the photoninduced process and virtual photons. At higher dilepton invariant masses the statistical { 8 { uncertainty of the MC simulation is much smaller than that of the data through the use of mass-binned MC samples. An additional background arises from W +jets and multi-jet events from which at most one real lepton is produced. This background contributes to the selected samples due to having one or more jets satisfying the lepton selection criteria (so called \fakes"). In the dimuon channel, contributions from W +jets and multi-jet production are found to be negligible, and therefore are not included in the expected yield. In the dielectron channel the contributions from these processes are determined with a data-driven technique, the matrix method, in two steps. In the rst step, the probabilities that a jet and a real electron satisfy the electron identi cation requirements are evaluated, for both the nominal and a loosened selection criteria. The loosened selection di ers from the nominal one by the use of the Loose electron identi cation criteria and no isolation criterion. Then, in the second step these probabilities are used to estimate the level of contamination, due to fakes, in the selected sample of events. A probability r that a real electron passing the loosened selection satis es the nominal electron selection criteria is estimated from MC simulated DY samples in several regions of ET and j j. The probability f that a jet passing the loosened selection satis es the nominal electron selection criteria is determined in regions of ET and j j in data samples triggered on the presence of a Very Loose or a Loose electron candidate. Contributions to these samples from the production of W and Z bosons are suppressed by vetoing events with large missing transverse energy (ETmiss > 25 GeV) or with two Loose electron candidates compatible with Z boson mass, or two candidates passing the Medium identi cation criteria. The ETmiss is reconstructed as the negative vectorial sum of the calibrated momenta of the electrons, muons, and jets, in the event. Residual contributions from processes with real electrons in the calculation of f are accounted for by using the MC simulated samples. The selected events are grouped according to the identi cation criteria satis ed by the electrons. A system of equations between numbers of paired objects (Nab, with ETa > ETb) is used to solve for the unknown contribution to the background in each of the kinematic regions from events with one or more fake electrons: N Multi-jet & W+jets = rf (NRF + NFR) + f 2NFF : { 9 { 0 0NTT 1 BBNTLCCC = BBBBB(r1(1 BBNLT C A r 2 r) r)r nominal requirements. at least one fake electron: Here the subscripts R and F refer to real electrons and fakes (jets), respectively. The subscript T refers to electrons that satisfy the nominal selection criteria. The subscript L corresponds to electrons that pass the loosened requirements described above but fail the The background is given as the part of NTT that originates from a pair of objects with rf r(1 (1 f ) r)f f r f (1 (1 r) f )r (1 r)2 (1 r)(1 f ) (1 f )(1 r) (1 f (1 (1 f 2 1 0NRR 1 f )2 f )ff)CCCCCA BBBB@NNFRRFCCCC : A NFF (6.1) (6.2) The true paired objects on the right-hand side of eq. (6.2) can be expressed in terms of measureable quantities (NTT; NTL; NLT; NLL) by inverting the matrix in eq. (6.1). The estimate is extrapolated to the full mass range considered by tting an analytic function to the dielectron invariant mass (mee) distribution above 125 GeV to mitigate e ects of limited event counts in the high-mass region and of method instabilities due to a negligible contribution from fakes in the Z peak region. The t is repeated by increasing progressively the lower edge of the t range by 10 GeV per step until weighted mean of all ts is taken as the central value and the envelope as the uncertainty. Additional uncertainties in this background estimate are evaluated by considering di erences between the estimates for events with same-charge and opposite-charge electrons as well as by varying the electron identi cation probabilities. The uncertainty on this background can, due to the extrapolation, become very large at high mass, but has only a negligible impact on the nal results of this analysis. 7 Systematic uncertainties Systematic uncertainties estimated to have a non-negligible impact on the expected crosssection limit are considered as nuisance parameters in the statistical interpretation and include both the theoretical and experimental e ects on the total background and experimental e ects on the signal. Theoretical uncertainties in the background prediction are dominated by the DY background, throughout the entire dilepton invariant mass range. They arise from the eigenvector variations of the nominal PDF set, as well as variations of PDF scales, the strong coupling ( S (MZ )), EW corrections, and photon-induced (PI) corrections. The e ect of choosing di erent PDF sets are also considered. The theoretical uncertainties are the same for both channels at generator level, but they result in di erent uncertainties at reconstruction level due to the di ering resolutions between the dielectron and dimuon channels. The PDF variation uncertainty is obtained using the 90% CL CT14NNLO PDF error set and by following the procedure described in refs. [16, 47, 48]. Rather than using a single nuisance parameter to describe the 28 eigenvectors of this PDF error set, which could lead to an underestimation of its e ect, a re-diagonalised set of 7 PDF eigenvectors was used [29], which are treated as separate nuisance parameters. This represents the minimal set of PDF eigenvectors that maintains the necessary correlations, and the sum in quadrature of these eigenvectors matches the original CT14NNLO error envelope well. The uncertainties due to the variation of PDF scales and S are derived using VRAP with the former obtained by varying the renormalisation and factorisation scales of the nominal CT14NNLO PDF up and down simultaneously by a factor of two. The value of S used (0.118) is varied by 0:003. The EW correction uncertainty was assessed by comparing the nominal additive (1+ EW+ QCD) treatment with the multiplicative approximation ((1+ EW)(1+ QCD)) treatment of the EW correction in the combination of the higher-order EW and QCD e ects. The uncertainty in the photon-induced correction is calculated based on the uncertainties in the quark masses and the photon PDF. Following the recommendations of the PDF4LHC forum [48], an additional uncertainty due to the choice of nominal PDF set is derived by comparing the central values of CT14NNLO with those from other PDF sets, namely MMHT14 [49] and NNPDF3.0 [50]. The maximum absolute deviation from the envelope of these comparisons is used as the PDF choice uncertainty, where it is larger than the CT14NNLO PDF eigenvector variation envelope. Theoretical uncertainties are not applied to the signal prediction in the statistical interpretation. Theoretical uncertainties on the estimation of the top quark and diboson backgrounds were also considered, both from the independent variation of the factorisation ( F) and renormalisation ( R) scales, and from the variations in the PDF and S, following the PDF4LHC prescription. Normalisation uncertainties in the top quark and diboson background are shown in the \Top Quarks Theoretical" and \Dibosons Theoretical" entry in The following sources of experimental uncertainty are accounted for: lepton e ciencies due to triggering, identi cation, reconstruction, and isolation, lepton energy scale and resolution, pile-up e ects, as well as the multi-jet and W +jets background estimate. The same sources of experimental uncertainty are considered for the DY background and signal treatment. E ciencies are evaluated using events from the Z ! `` peak and then extrapolated to high energies. The uncertainty in the muon reconstruction e ciency is the largest experimental uncertainty in the dimuon channel. It includes the uncertainty obtained from Z ! data studies and a high-pT extrapolation uncertainty corresponding to the decrease in the muon reconstruction and selection e ciency with increasing pT which is predicted by the MC simulation. The e ect on the muon reconstruction e ciency was found to be approximately 3% per TeV as a function of muon pT. The uncertainty in the electron identi cation e ciency extrapolation is based on the di erences in the electron shower shapes in the EM calorimeters between data and MC simulation in the Z ! ee peak, which are propagated to the high-ET electron sample. The e ect on the electron identi cation e ciency was found to be 2.0% and is independent of ET for electrons with ET above 150 GeV. For the isolation e ciencies, uncertainties were estimated for 150 < pT < 500 GeV and above 500 GeV separately, using DY candidates in data. The larger isolation uncertainty that is observed for electrons is due to the uncertainty inherent in calorimeter-based isolation for electrons (track-based isolation is also included), compared to the solely track-based only isolation for muons. Mismodelling of the muon momentum resolution due to residual misalignments in the MS can alter the steeply falling background shape at high dilepton mass and can signi cantly modify the width of the signals line shape. This uncertainty is obtained by studying the muon momentum resolution in dedicated data-taking periods with no magnetic eld in the MS [44]. For the dielectron channel, the uncertainty includes a contribution from the multi-jet and W +jets data-driven estimate that is obtained by varying both the overall normalisation and the extrapolation methodology, which is explained in section 6. The systematic uncertainty from pile-up e ects is assessed by inducing a variation in the pile-up reweighting of MC events and is included to cover the uncertainty on the ratio of the predicted and measured inelastic cross-section in the ducial volume de ned by MX > 13 GeV, where MX is the mass of the non-di ractive hadronic system [51]. An uncertainty on the beam energy of 0.65% is estimated and included. The uncertainty on the combined 2015 and 2016 integrated lumiDielectron channel [%] Dimuon channel [%] Signal of events at dilepton masses of 2 TeV and 4 TeV. The values reported in parenthesis correspond to the 4 TeV mass. The values quoted for the background represent the relative change in the total expected number of events in the corresponding m`` histogram bin containing the reconstructed m`` mass of 2 TeV (4 TeV). For the signal uncertainties the values were computed using a Z0 signal model with a pole mass of 2 TeV (4 TeV) by comparing yields in the core of the mass peak (within the full width at half maximum) between the distribution varied due to a given uncertainty and the nominal distribution. \|" represents cases where the uncertainty is not applicable. nosity is 3.2%. It is derived, following a methodology similar to that detailed in ref. [52], from a calibration of the luminosity scale using x{y beam-separation scans performed in August 2015 and May 2016. Systematic uncertainties used in the statistical analysis of the results are summarised in table 2 at dilepton mass values of 2 TeV and 4 TeV. The systematic uncertainties are constrained in the likelihood during the statistical interpretation through a marginalisation procedure, as described in section 9. 275 711 intervals. The quoted errors correspond to the combined statistical, theoretical, and experimental systematic uncertainties. Expected event yields are reported for the Z0 model, for two values of the pole mass. All numbers shown are obtained before the marginalisation procedure. 8 Event yields Expected and observed event yields, in bins of invariant mass, are shown in table 3 for the dielectron channel, and in table 4 for the dimuon channel. Expected event yields are split into the di erent background sources and the yields for two signal scenarios are also provided. In general, the observed data are in good agreement with the SM prediction, taking into account the uncertainties as described in section 7. Distributions of m`` in the dielectron and dimuon channels are shown in gure 1. No clear excess is observed, but signi cances are quanti ed and discussed in section 9. The highest dilepton invariant mass event is 2.90 TeV in the dielectron channel, and 1.99 TeV in the dimuon channel. Both of these events are well-measured with little other detector activity. 9 Statistical analysis The m`` distributions are scrutinised for a resonant or non-resonant new physics excess using two methods and are used to set limits on resonant and non-resonant new physics models, as well as on generic resonances. Tabulated values of all the observed results, along with their uncertainties, are also provided in the Durham HEP database.2 The signal search and limit setting rely on a likelihood function, dependent on the parameter of interest, such 2A complete set of tables with the full results are available at the Durham HepData repository, 10 700 000 intervals. The quoted errors correspond to the combined statistical, theoretical, and experimental systematic uncertainties. Expected event yields are reported for the Z0 model, for two values of the pole mass. All numbers shown are obtained before the marginalisation procedure. as the signal cross-section, signal strength, coupling constant or the contact interaction scale. The likelihood function also depends on nuisance parameters which describe the systematic uncertainties. In this analysis the data are assumed to be Poisson-distributed in each bin of the m`` distribution and the likelihood is constructed as a product of individual bin likelihoods. In case of the individual channel results, the product is taken over the bins of the m`` histogram in the given channel, while for combined results the product is taken over bins of histograms in dielectron and dimuon channels. The logarithmic m`` histogram binning shown in gure 1 uses 66 mass bins and is chosen for setting limits on resonant signals. This binning is optimal for resonances with a width of 3%, therefore the chosen bin width for the m`` histogram in the search phase corresponds to the resolution in the dielectron (dimuon) channel, which varies from 10 (60) GeV at m`` = 1 TeV to 15 (200) GeV at m`` = 2 TeV, and 20 (420) GeV at m`` = 3 TeV. For setting limits on the contact interaction scale, the m`` distribution has eight bins above 400 GeV with bin widths varying from 100 to 1500 GeV. The m`` region from 80 to 120 GeV is included in the likelihood as a single bin in the limit setting on resonant signals to help constrain mass-independent components of systematic uncertainties, but that region is not searched for a new-physics signal. The parameter is de ned as the ratio of the signal production cross-section times branching ratio into the dilepton nal state ( B) to its theoretically predicted value. Upper limits on B for speci c Z0 boson models and generic Z0 bosons, 0 of the Minimal Z0 boson, and lower limit on the CI scale are set in a Bayesian approach. The calculations are performed with the Bayesian Analysis Toolkit (BAT) [ 53 ], which uses a Markov Chain MC Z/γ* Top Quarks Diboson Z’χ (3 TeV) Z’χ (4 TeV) Z’χ (5 TeV) Multi­Jet & W+Jets Z/γ* Top Quarks Diboson Z’χ (3 TeV) Z’χ (4 TeV) Z’χ (5 TeV) E 106 105 104 103 102 10 1 10−1 10−2 after selection, for data and the SM background estimates as well as their ratio before and after marginalisation. Selected Z0 signals with a pole mass of 3, 4 and 5 TeV are overlaid. The bin width of the distributions is constant in log(m``) and the shaded band in the lower panels illustrates the total systematic uncertainty, as explained in section 7. The data points are shown together with their statistical uncertainty. Exact bin edges and contents are provided in table 8 and table 9 in the appendix. (MCMC) technique to compute the marginal posterior probability density of the parameter of interest (so-called \marginalisation"). Limit values obtained using the experimental data are quoted as observed limits, while median values of the limits obtained from a large number of simulated experiments, where only SM background is present, are quoted as the expected limits. The upper limits on B are interpreted as lower limits on the Z0 pole mass using the relationship between the pole mass and the theoretical Z0 cross-section. In the context of the Minimal Z0 model or CI scenarios, limits are set on the parameter of interest. In the case of the Minimal Z0 model the parameter of interest is 04. For a CI the parameter of interest is set either to 1= 2 or to 1= 4 as this corresponds to the scaling of the CI-SM interference contribution or the pure CI contribution respectively. In both the Minimal Z0 and the CI cases, the nominal Poisson expectation in each m`` bin is expressed as a function of the parameter of interest. As in the context of the Z0 limit setting, the Poisson mean is modi ed by shifts due to systematic uncertainties, but in both the Minimal Z0 and the CI cases, these shifts are non-linear functions of the parameter of interest. A prior uniform in the parameter of interest is used for all limits. Two complementary approaches are used in the search for a new-physics signal. The rst approach, which does not rely on a speci c signal model and therefore is sensitive to a wide range of new physics, uses the BumpHunter (BH) [ 54 ] utility. In this approach, all consecutive intervals in the m`` histogram ranging from two bins to half of the bins in the histogram are searched for an excess. In each such interval a Poisson probability (p-value) is computed for an event count greater or equal to the number observed found in data, given the SM prediction. The modes of marginalised posteriors of the nuisance parameters from the MCMC method are used to construct the SM prediction. The negative logarithm of the smallest p-value is the BH statistic. The BH statistic is then interpreted as a global p-value utilising simulated experiments where, in each simulated experiment, simulated data is generated from SM background model. The dielectron and dimuon channels are tested separately. A search for Z0 signals as well as generic Z0 signals with widths from 1% to 12% is performed utilising the log-likelihood ratio (LLR) test described in ref. [55]. This second approach is speci cally sensitive to narrow Z0-like signals, and is thus complementary to the more general BH approach. To perform the LLR search, the Histfactory [56] package is used together with the RooStats [57] and RooFit [ 58 ] packages. The p-value for nding a Z0 signal excess (at a given pole mass), or a variable width generic Z0 excess (at a given central mass and with a given width), more signi cant than that observed in the data, is computed analytically, using a test statistic q0. The test statistic q0 is based on the logarithm of the pro le likelihood ratio ( ). The test statistic is modi ed for signal masses below 1.5 TeV to also quantify the signi cance of potential de cits in the data. As in the BH search the SM background model is constructed using the modes of marginalised posteriors of the nuisance parameters from the MCMC method, and these nuisance parameters are not included in the likelihood at this stage. Therefore, in the search-phase the background estimate and signal shapes are xed to their post-marginalisation estimates, and systematic uncertainties are not included in the computation of the p-value. Starting with MZ0 = 150 GeV, multiple mass hypotheses are tested in pole-mass steps corresponding to the histogram bin width to compute the local p-values | i.e. p-values corresponding to speci c signal mass hypotheses. Simulated experiments (for MZ0 > 1.5 TeV) and asymptotic relations (for MZ0 < 1.5 TeV) in ref. [55] are used to estimate the global p-value, which is the probability to nd anywhere in the m`` distribution a Z0-like excess more signi cant than that observed in the data. 10 Results The data, scrutinised using the statistical tests described in the previous section, show no signi cant excesses. The LLR tests for a Z0 resonance nd global p-values of 58%, 91% and 83% in the dielectron, dimuon, and combined channels, respectively. The local and global p-values as a function of the Z0 pole mass are shown in gure 2. The un-capped p-value, is used below a pole mass of 1.5 TeV, which quanti es both excesses and de cits, while above 1.5 TeV the signal strength parameter is constrained to be positive, yielding a capped pvalue. This constraint is used in the high mass region where the expected background is very low, to avoid ill-de ned con gurations of the probability density function in the likelihood t, with negative probabilities. The largest deviation from the background-only hypothesis using the LLR tests for a Z0 is observed at 2.37 TeV in the dielectron mass spectrum with a local signi cance of ATLAS 10−1 10−2 0σ 10−3 1σ Global significance for largest excess 4.0 TeV for the combined dilepton channel. Accompanying local and global signi cance levels are shown as dashed lines. The uncapped p0 value is used for pole masses below 1.5 TeV, while the capped p0 value is used for higher pole masses. ATLAS Z’ → ee observed data together with their statistical uncertainty, combined background prediction, and corresponding bin-by-bin signi cance. The most signi cant interval is indicated by the vertical blue lines. Exact bin edges and contents are provided in table 10 and table 11 in the appendix. 2.5 , but globally the excess is not signi cant. The BumpHunter [ 54 ] test, which scans the mass spectrum with varying intervals to nd the most signi cant excess in data, nds pvalues of 71% and 94% in the dielectron and dimuon channels, respectively. Figure 3 shows the dilepton mass distribution in the dielectron and dimuon channels with the observed data overlaid on the combined background prediction, and also the local signi cance. The interval with the largest upward deviation is indicated by a pair of blue lines. 10.1 Z0 cross-section and mass limits Upper limits on the cross-section times branching ratio ( B) for Z0 bosons are presented in gure 4. The observed and expected lower limits on the pole mass for various Z0 scenarios, 10­1 10­2 10­3 10­4 10­5 Z’ → ll leptons of a single avour as a function of Z0 pole mass (MZ0 ). Results are shown for the combined dilepton channel. The signal theoretical B are calculated with Pythia 8 using the NNPDF23LO PDF set [36], and corrected to next-to-next-to-leading order in QCD using VRAP [28] and the CT14NNLO PDF set [29]. The signals theoretical uncertainties are shown as a band on the ZS0SM theory line for illustration purposes, but are not included in the B limit calculation. as described in section 2.1, are summarised in table 5. The Z0 signal is used to extract the limits, which is over-conservative for the other E6 models presented, but slightly underconservative for the ZS0SM, although only by 100 GeV in the mass limit at most. The upper limits on B for Z0 bosons start to weaken above a pole mass of 3:5 TeV. The e ect is more pronounced in the dimuon channel due to worse mass resolution than in the dielectron channel. The weakening is mainly due to the combined e ect of a rapidly falling signal cross-section as the kinematic limit is approached, with an increasing proportion of the signal being produced o -shell in the low-mass tail, and the natural width of the resonance. The selection e ciency also starts to slowly decrease at very high pole masses, but this is a subdominant e ect. 10.2 Limits on Minimal Z0 models Limits are set on the relative coupling strength of the Z0 boson relative to that of the SM Z boson ( 0) as a function of the ZM0in boson mass, and as a function of the mixing angle Min, as shown in gure 5, and described in section 2.2. The two Min values yielding the minimum and maximum cross-sections are used to de ne a band of limits in the ( 0, MZMin ) plane. It is possible to put lower mass limits on speci c models which are covered by the ( 0, Min) parameterisation as in table 6. The structure observed in the limits as a function of Min, such as the maximum around Min = 2.2, is due to the changing shape of the resonance at a given pole mass, from narrow to wide. 10.3 Generic Z0 limits In order to derive more general limits, an approach which compares the data to signals that are more model-independent was developed. This was achieved by applying ducial cuts to the signal (lepton pT > 30 GeV, and lepton j j < 2.5) and a mass window of Z0 Z0 S Z0 I Z0 ZN0 Z0 Model Z0 Z30R ZB0 L The widths are quoted as a percentage of the resonance mass. tan Min ee Lower limits on MZM0in [TeV] Obs Exp Obs Exp Obs Exp two times the true signal width (width of the Breit-Wigner) around the pole mass of the signal. This is expected to give limits that are more model independent since any e ect on the sensitivity due to the tails of the resonance, foremost the parton luminosity tail and interference e ects, are removed. The resulting limits can be seen in gure 6. For other models to be interpreted with these cross-section limits, the acceptance for a given model in the same ducial region should be calculated, multiplied by the total cross-section, and the resulting acceptance-corrected cross-section theory curve overlaid, to extract the mass limit for that model. The dilepton invariant mass shape, and angular distributions for the chosen model, should be su ciently close to a generic Z0 resonance, such as those presented in this article, so as not to induce additional e ciency di erences. 10.4 Limits on the energy scale of contact interactions Lower limits are set at 95% CL on the energy scale , for the LL, LR, RL, and RR Contact Interaction model, as described in section 2.3. Both the constructive and destructive 2.8794 3.2131 0 0 0 0 the non-linear binning presented in gure 3b. The expected yield is given up to at most 4 digit precision. Acknowledgments HJEP10(27)8 We thank CERN for the very successful operation of the LHC, as well as the support sta from our institutions without whom ATLAS could not be operated e ciently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co- nanced by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [59]. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [INSPIRE]. [3] E. Salvioni, G. Villadoro and F. Zwirner, Minimal Z0 models: Present bounds and early LHC [4] ATLAS collaboration, Search for high-mass new phenomena in the dilepton nal state using s = 13 TeV with the ATLAS detector, Phys. Lett. B 761 (2016) proton-proton collisions at p 372 [arXiv:1607.03669] [INSPIRE]. collisions at p [arXiv:1609.05391] [INSPIRE]. [5] CMS collaboration, Search for narrow resonances in dilepton mass spectra in proton-proton s = 13 TeV and combination with 8 TeV data, Phys. Lett. B 768 (2017) 57 [6] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE]. 003 [arXiv:0708.3017] [INSPIRE]. [7] P. Meade and L. Randall, Black Holes and Quantum Gravity at the LHC, JHEP 05 (2008) [8] M.V. Chizhov, V.A. Bednyakov and J.A. Budagov, Proposal for chiral bosons search at LHC via their unique new signature, Phys. Atom. Nucl. 71 (2008) 2096 [arXiv:0801.4235] Rev. D 71 (2005) 051901 [hep-ph/0405209] [INSPIRE]. [9] F. Sannino and K. Tuominen, Orientifold theory dynamics and symmetry breaking, Phys. [10] CMS collaboration, Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at p s = 8 TeV, JHEP 04 (2015) 025 [arXiv:1412.6302] [INSPIRE]. [11] M. Dittmar, A.-S. Nicollerat and A. Djouadi, Z0 studies at the LHC: An Update, Phys. Lett. B 583 (2004) 111 [hep-ph/0307020] [INSPIRE]. [12] E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Z0 physics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE]. [13] G. Senjanovic and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE]. [14] R.N. Mohapatra and J.C. Pati, Left-Right Gauge Symmetry and an Isoconjugate Model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE]. [15] L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal B L extension of the Standard model: Z0 and neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [INSPIRE]. p [16] ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at s = 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] 56 (1984) 579 [INSPIRE]. cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE]. [20] ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [INSPIRE]. [21] ATLAS collaboration, ATLAS Insertable B-Layer Technical Design Report, CERN-LHCC-2010-013 (2010) [ATLAS-TDR-19] [Addendum ATLAS-TDR-19-ADD-1 (2012)] [INSPIRE]. 77 (2017) 317 [arXiv:1611.09661] [INSPIRE]. calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 HJEP10(27)8 [24] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1002.2581] [INSPIRE]. [arXiv:1007.2241] [INSPIRE]. pp collisions at p [arXiv:1406.3660] [INSPIRE]. [25] T. Sjostrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE]. [26] ATLAS collaboration, Measurement of the Z= boson transverse momentum distribution in s = 7 TeV with the ATLAS detector, JHEP 09 (2014) 145 [27] ATLAS collaboration, Monte Carlo Generators for the Production of a W or Z= Boson in Association with Jets at ATLAS in Run 2, ATL-PHYS-PUB-2016-003 (2016). [28] C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE]. [29] S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE]. [30] S.G. Bondarenko and A.A. Sapronov, NLO EW and QCD proton-proton cross section calculations with mcsanc-v1.01, Comput. Phys. Commun. 184 (2013) 2343 [arXiv:1301.3687] [INSPIRE]. [31] A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] ATL-PHYS-PUB-2016-020 (2016). ATL-PHYS-PUB-2016-002 (2016). [32] ATLAS collaboration, Studies on top-quark Monte Carlo modelling for Top2016, [33] ATLAS collaboration, Multi-Boson Simulation for 13 TeV ATLAS Analyses, HJEP10(27)8 Instrum. Meth. A 506 (2003) 250 [INSPIRE]. 823 [arXiv:1005.4568] [INSPIRE]. [41] ATLAS collaboration, Electron e ciency measurements with the ATLAS detector using 2012 LHC proton-proton collision data, Eur. Phys. J. C 77 (2017) 195 [arXiv:1612.01456] proton-proton collision data at p [arXiv:1603.05598] [INSPIRE]. [42] ATLAS collaboration, Electron e ciency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data, ATLAS-CONF-2016-024 (2016) [INSPIRE]. [43] ATLAS collaboration, Electron and photon energy calibration with the ATLAS detector using data collected in 2015 at p s = 13 TeV, ATL-PHYS-PUB-2016-015 (2016). [44] ATLAS collaboration, Muon reconstruction performance of the ATLAS detector in s = 13 TeV, Eur. Phys. J. C 76 (2016) 292 [45] ATLAS collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data, Eur. Phys. J. C 74 (2014) 3071 [arXiv:1407.5063] [INSPIRE]. [46] Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE]. 035 [arXiv:1401.0013] [INSPIRE]. 023001 [arXiv:1510.03865] [INSPIRE]. [47] J. Gao and P. Nadolsky, A meta-analysis of parton distribution functions, JHEP 07 (2014) [48] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) [49] P. Motylinski, L. Harland-Lang, A.D. Martin and R.S. Thorne, Updates of PDFs for the 2nd LHC run, Nucl. Part. Phys. Proc. 273{275 (2016) 2136 [arXiv:1411.2560] [INSPIRE]. [50] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. p [arXiv:1606.02625] [INSPIRE]. [51] ATLAS collaboration, Measurement of the Inelastic Proton-Proton Cross section at s = 13 TeV with the ATLAS Detector at the LHC, Phys. Rev. Lett. 117 (2016) 182002 [52] ATLAS collaboration, Luminosity determination in pp collisions at p s = 8 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 653 [arXiv:1608.03953] [INSPIRE]. arXiv:1101.0390 [INSPIRE]. HistFactory: A tool for creating statistical models for use with RooFit and RooStats, CERN-OPEN-2012-016 (2012) [INSPIRE]. (2003) MOLT007 [physics/0306116] [INSPIRE]. ATL-GEN-PUB-2016-002 (2016). [59] ATLAS collaboration, ATLAS Computing Acknowledgements 2016{2017, M. Aaboud137d, G. Aad88, B. Abbott115, O. Abdinov12; , B. Abeloos119, S.H. Abidi161, O.S. AbouZeid139, N.L. Abraham151, H. Abramowicz155, H. Abreu154, R. Abreu118, Y. Abulaiti148a,148b, B.S. Acharya167a,167b;a, S. Adachi157, L. Adamczyk41a, J. Adelman110, M. Adersberger102, T. Adye133, A.A. A older139, T. Agatonovic-Jovin14, C. Agheorghiesei28c, J.A. Aguilar-Saavedra128a,128f, S.P. Ahlen24, F. Ahmadov68;b, G. Aielli135a,135b, S. Akatsuka71, H. Akerstedt148a,148b, T.P.A. Akesson84, E. Akilli52, A.V. Akimov98, G.L. Alberghi22a,22b, J. Albert172, P. Albicocco50, M.J. Alconada Verzini74, S.C. Alderweireldt108, M. Aleksa32, I.N. Aleksandrov68, C. Alexa28b, G. Alexander155, T. Alexopoulos10, M. Alhroob115, B. Ali130, M. Aliev76a,76b, G. Alimonti94a, J. Alison33, S.P. Alkire38, B.M.M. Allbrooke151, B.W. Allen118, P.P. Allport19, A. Aloisio106a,106b, A. Alonso39, F. Alonso74, C. Alpigiani140, A.A. Alshehri56, M.I. Alstaty88, B. Alvarez Gonzalez32, D. Alvarez Piqueras170, M.G. Alviggi106a,106b, B.T. Amadio16, Y. Amaral Coutinho26a, C. Amelung25, D. Amidei92, S.P. Amor Dos Santos128a,128c, A. Amorim128a,128b, S. Amoroso32, G. Amundsen25, C. Anastopoulos141, L.S. Ancu52, N. Andari19, T. Andeen11, C.F. Anders60b, J.K. Anders77, K.J. Anderson33, A. Andreazza94a,94b, V. Andrei60a, S. Angelidakis9, I. Angelozzi109, A. Angerami38, A.V. Anisenkov111;c, N. Anjos13, A. Annovi126a,126b, C. Antel60a, M. Antonelli50, A. Antonov100; , D.J. Antrim166, F. Anulli134a, M. Aoki69, L. Aperio Bella32, G. Arabidze93, Y. Arai69, J.P. Araque128a, V. Araujo Ferraz26a, A.T.H. Arce48, R.E. Ardell80, F.A. Arduh74, J-F. Arguin97, S. Argyropoulos66, M. Arik20a, A.J. Armbruster32, L.J. Armitage79, O. Arnaez161, H. Arnold51, M. Arratia30, O. Arslan23, A. Artamonov99, G. Artoni122, S. Artz86, S. Asai157, N. Asbah45, A. Ashkenazi155, L. Asquith151, K. Assamagan27, R. Astalos146a, M. Atkinson169, N.B. Atlay143, K. Augsten130, G. Avolio32, B. Axen16, M.K. Ayoub119, G. Azuelos97;d, A.E. Baas60a, M.J. Baca19, H. Bachacou138, K. Bachas76a,76b, M. Backes122, M. Backhaus32, P. Bagnaia134a,134b, M. Bahmani42, H. Bahrasemani144, J.T. Baines133, M. Bajic39, O.K. Baker179, E.M. Baldin111;c, P. Balek175, F. Balli138, W.K. Balunas124, E. Banas42, A. Bandyopadhyay23, Sw. Banerjee176;e, A.A.E. Bannoura178, L. Barak32, E.L. Barberio91, D. Barberis53a,53b, M. Barbero88, T. Barillari103, M-S Barisits32, J.T. Barkeloo118, T. Barklow145, N. Barlow30, S.L. Barnes36c, B.M. Barnett133, R.M. Barnett16, Z. Barnovska-Blenessy36a, A. Baroncelli136a, G. Barone25, A.J. Barr122, L. Barranco Navarro170, F. Barreiro85, J. Barreiro Guimar~aes da Costa35a, R. Bartoldus145, A.E. Barton75, P. Bartos146a, A. Basalaev125, A. Bassalat119;f , R.L. Bates56, S.J. Batista161, J.R. Batley30, M. Battaglia139, M. Bauce134a,134b, F. Bauer138, H.S. Bawa145;g, J.B. Beacham113, M.D. Beattie75, T. Beau83, P.H. Beauchemin165, P. Bechtle23, H.P. Beck18;h, H.C. Beck57, K. Becker122, M. Becker86, M. Beckingham173, C. Becot112, A.J. Beddall20e, A. Beddall20b, V.A. Bednyakov68, M. Bedognetti109, C.P. Bee150, T.A. Beermann32, M. Begalli26a, M. Begel27, J.K. Behr45, A.S. Bell81, G. Bella155, L. Bellagamba22a, A. Bellerive31, M. Bellomo154, K. Belotskiy100, O. Beltramello32, N.L. Belyaev100, O. Benary155; , D. Benchekroun137a, M. Bender102, K. Bendtz148a,148b, N. Benekos10, Y. Benhammou155, E. Benhar Noccioli179, J. Benitez66, D.P. Benjamin48, M. Benoit52, J.R. Bensinger25, S. Bentvelsen109, L. Beresford122, M. Beretta50, D. Berge109, E. Bergeaas Kuutmann168, N. Berger5, J. Beringer16, S. Berlendis58, N.R. Bernard89, G. Bernardi83, C. Bernius145, F.U. Bernlochner23, T. Berry80, P. Berta131, C. Bertella35a, G. Bertoli148a,148b, F. Bertolucci126a,126b, I.A. Bertram75, C. Bertsche45, D. Bertsche115, G.J. Besjes39, O. Bessidskaia Bylund148a,148b, M. Bessner45, N. Besson138, C. Betancourt51, A. Bethani87, S. Bethke103, A.J. Bevan79, J. Beyer103, R.M. Bianchi127, O. Biebel102, D. Biedermann17, R. Bielski87, K. Bierwagen86, N.V. Biesuz126a,126b, M. Biglietti136a, T.R.V. Billoud97, H. Bilokon50, M. Bindi57, A. Bingul20b, C. Bini134a,134b, HJEP10(27)8 K.M. Black24, R.E. Blair6, T. Blazek146a, I. Bloch45, C. Blocker25, A. Blue56, W. Blum86; , U. Blumenschein79, S. Blunier34a, G.J. Bobbink109, V.S. Bobrovnikov111;c, S.S. Bocchetta84, A. Bocci48, C. Bock102, M. Boehler51, D. Boerner178, D. Bogavac102, A.G. Bogdanchikov111, C. Bohm148a, V. Boisvert80, P. Bokan168;i, T. Bold41a, A.S. Boldyrev101, A.E. Bolz60b, M. Bomben83, M. Bona79, M. Boonekamp138, A. Borisov132, G. Borissov75, J. Bortfeldt32, D. Bortoletto122, V. Bortolotto62a,62b,62c, D. Boscherini22a, M. Bosman13, J.D. Bossio Sola29, J. Boudreau127, J. Bou ard2, E.V. Bouhova-Thacker75, D. Boumediene37, C. Bourdarios119, S.K. Boutle56, A. Boveia113, J. Boyd32, I.R. Boyko68, J. Bracinik19, A. Brandt8, G. Brandt57, O. Brandt60a, U. Bratzler158, B. Brau89, J.E. Brau118, W.D. Breaden Madden56, K. Brendlinger45, A.J. Brennan91, L. Brenner109, R. Brenner168, S. Bressler175, D.L. Briglin19, T.M. Bristow49, D. Britton56, D. Britzger45, F.M. Brochu30, I. Brock23, R. Brock93, G. Brooijmans38, T. Brooks80, W.K. Brooks34b, J. Brosamer16, E. Brost110, J.H Broughton19, P.A. Bruckman de Renstrom42, D. Bruncko146b, A. Bruni22a, G. Bruni22a, L.S. Bruni109, BH Brunt30, M. Bruschi22a, N. Bruscino23, P. Bryant33, L. Bryngemark45, T. Buanes15, Q. Buat144, P. Buchholz143, A.G. Buckley56, I.A. Budagov68, F. Buehrer51, M.K. Bugge121, O. Bulekov100, D. Bullock8, T.J. Burch110, S. Burdin77, C.D. Burgard51, A.M. Burger5, B. Burghgrave110, K. Burka42, S. Burke133, I. Burmeister46, J.T.P. Burr122, E. Busato37, D. Buscher51, V. Buscher86, P. Bussey56, J.M. Butler24, C.M. Buttar56, J.M. Butterworth81, P. Butti32, W. Buttinger27, A. Buzatu35c, A.R. Buzykaev111;c, S. Cabrera Urban170, D. Caforio130, V.M. Cairo40a,40b, O. Cakir4a, N. Calace52, P. Cala ura16, A. Calandri88, G. Calderini83, P. Calfayan64, G. Callea40a,40b, L.P. Caloba26a, S. Calvente Lopez85, D. Calvet37, S. Calvet37, T.P. Calvet88, R. Camacho Toro33, S. Camarda32, P. Camarri135a,135b, D. Cameron121, R. Caminal Armadans169, C. Camincher58, S. Campana32, M. Campanelli81, A. Camplani94a,94b, A. Campoverde143, V. Canale106a,106b, M. Cano Bret36c, J. Cantero116, T. Cao155, M.D.M. Capeans Garrido32, I. Caprini28b, M. Caprini28b, M. Capua40a,40b, R.M. Carbone38, R. Cardarelli135a, F. Cardillo51, I. Carli131, T. Carli32, G. Carlino106a, B.T. Carlson127, L. Carminati94a,94b, R.M.D. Carney148a,148b, S. Caron108, E. Carquin34b, S. Carra94a,94b, G.D. Carrillo-Montoya32, J. Carvalho128a,128c, D. Casadei19, M.P. Casado13;j , M. Casolino13, D.W. Casper166, R. Castelijn109, V. Castillo Gimenez170, N.F. Castro128a;k, A. Catinaccio32, J.R. Catmore121, A. Cattai32, J. Caudron23, V. Cavaliere169, E. Cavallaro13, D. Cavalli94a, M. Cavalli-Sforza13, V. Cavasinni126a,126b, E. Celebi20d, F. Ceradini136a,136b, L. Cerda Alberich170, A.S. Cerqueira26b, A. Cerri151, L. Cerrito135a,135b, F. Cerutti16, A. Cervelli18, S.A. Cetin20d, A. Chafaq137a, D. Chakraborty110, S.K. Chan59, W.S. Chan109, Y.L. Chan62a, P. Chang169, J.D. Chapman30, D.G. Charlton19, C.C. Chau31, C.A. Chavez Barajas151, S. Che113, S. Cheatham167a,167c, A. Chegwidden93, S. Chekanov6, S.V. Chekulaev163a, G.A. Chelkov68;l, M.A. Chelstowska32, C. Chen67, H. Chen27, J. Chen36a, S. Chen35b, S. Chen157, X. Chen35c;m, Y. Chen70, H.C. Cheng92, H.J. Cheng35a, A. Cheplakov68, E. Cheremushkina132, R. Cherkaoui El Moursli137e, E. Cheu7, K. Cheung63, L. Chevalier138, V. Chiarella50, G. Chiarelli126a,126b, G. Chiodini76a, A.S. Chisholm32, A. Chitan28b, Y.H. Chiu172, M.V. Chizhov68, K. Choi64, A.R. Chomont37, S. Chouridou156, Y.S. Chow62a, V. Christodoulou81, M.C. Chu62a, J. Chudoba129, A.J. Chuinard90, J.J. Chwastowski42, L. Chytka117, A.K. Ciftci4a, D. Cinca46, V. Cindro78, I.A. Cioara23, C. Ciocca22a,22b, A. Ciocio16, F. Cirotto106a,106b, Z.H. Citron175, M. Citterio94a, M. Ciubancan28b, A. Clark52, B.L. Clark59, M.R. Clark38, P.J. Clark49, R.N. Clarke16, C. Clement148a,148b, Y. Coadou88, M. Cobal167a,167c, A. Coccaro52, J. Cochran67, L. Colasurdo108, B. Cole38, A.P. Colijn109, J. Collot58, T. Colombo166, P. Conde Muin~o128a,128b, E. Coniavitis51, S.H. Connell147b, I.A. Connelly87, S. Constantinescu28b, G. Conti32, F. Conventi106a;n, M. Cooke16, A.M. Cooper-Sarkar122, HJEP10(27)8 G. Cortiana103, G. Costa94a, M.J. Costa170, D. Costanzo141, G. Cottin30, G. Cowan80, D. De Pedis134a, A. De Salvo134a, U. De Sanctis135a,135b, A. De Santo151, K. De Vasconcelos Corga88, J.B. De Vivie De Regie119, W.J. Dearnaley75, R. Debbe27, C. Debenedetti139, D.V. Dedovich68, N. Dehghanian3, I. Deigaard109, M. Del Gaudio40a,40b, J. Del Peso85, D. Delgove119, F. Deliot138, C.M. Delitzsch7, A. Dell'Acqua32, L. Dell'Asta24, M. Dell'Orso126a,126b, M. Della Pietra106a,106b, D. della Volpe52, M. Delmastro5, C. Delporte119, P.A. Delsart58, D.A. DeMarco161, S. Demers179, M. Demichev68, A. Demilly83, S.P. Denisov132, D. Denysiuk138, D. Derendarz42, J.E. Derkaoui137d, F. Derue83, P. Dervan77, K. Desch23, C. Deterre45, K. Dette46, M.R. Devesa29, P.O. Deviveiros32, A. Dewhurst133, S. Dhaliwal25, F.A. Di Bello52, A. Di Ciaccio135a,135b, L. Di Ciaccio5, W.K. Di Clemente124, C. Di Donato106a,106b, A. Di Girolamo32, B. Di Girolamo32, B. Di Micco136a,136b, R. Di Nardo32, K.F. Di Petrillo59, A. Di Simone51, R. Di Sipio161, D. Di Valentino31, C. Diaconu88, M. Diamond161, F.A. Dias39, M.A. Diaz34a, E.B. Diehl92, J. Dietrich17, S. D ez Cornell45, A. Dimitrievska14, J. Dingfelder23, P. Dita28b, S. Dita28b, F. Dittus32, F. Djama88, T. Djobava54b, J.I. Djuvsland60a, M.A.B. do Vale26c, D. Dobos32, M. Dobre28b, C. Doglioni84, J. Dolejsi131, Z. Dolezal131, M. Donadelli26d, S. Donati126a,126b, P. Dondero123a,123b, J. Donini37, J. Dopke133, A. Doria106a, M.T. Dova74, A.T. Doyle56, E. Drechsler57, E. Dreyer144, M. Dris10, Y. Du36b, J. Duarte-Campderros155, A. Dubreuil52, E. Duchovni175, G. Duckeck102, A. Ducourthial83, O.A. Ducu97;p, D. Duda109, A. Dudarev32, A.Chr. Dudder86, E.M. Du eld16, L. Du ot119, M. Duhrssen32, M. Dumancic175, A.E. Dumitriu28b, A.K. Duncan56, M. Dunford60a, H. Duran Yildiz4a, M. Duren55, A. Durglishvili54b, D. Duschinger47, B. Dutta45, D. Duvnjak1, M. Dyndal45, B.S. Dziedzic42, C. Eckardt45, K.M. Ecker103, R.C. Edgar92, T. Eifert32, G. Eigen15, K. Einsweiler16, T. Ekelof168, M. El Kacimi137c, R. El Kossei 88, V. Ellajosyula88, M. Ellert168, S. Elles5, F. Ellinghaus178, A.A. Elliot172, N. Ellis32, J. Elmsheuser27, M. Elsing32, D. Emeliyanov133, Y. Enari157, O.C. Endner86, J.S. Ennis173, J. Erdmann46, A. Ereditato18, M. Ernst27, S. Errede169, M. Escalier119, C. Escobar170, B. Esposito50, O. Estrada Pastor170, A.I. Etienvre138, E. Etzion155, H. Evans64, A. Ezhilov125, M. Ezzi137e, F. Fabbri22a,22b, L. Fabbri22a,22b, V. Fabiani108, G. Facini81, R.M. Fakhrutdinov132, S. Falciano134a, P.J. Falke5, R.J. Falla81, J. Faltova32, Y. Fang35a, M. Fanti94a,94b, A. Farbin8, A. Farilla136a, C. Farina127, E.M. Farina123a,123b, T. Farooque93, S. Farrell16, S.M. Farrington173, P. Farthouat32, F. Fassi137e, P. Fassnacht32, D. Fassouliotis9, M. Faucci Giannelli80, A. Favareto53a,53b, W.J. Fawcett122, L. Fayard119, O.L. Fedin125;q, W. Fedorko171, S. Feigl121, L. Feligioni88, C. Feng36b, E.J. Feng32, H. Feng92, M.J. Fenton56, A.B. Fenyuk132, L. Feremenga8, P. Fernandez Martinez170, S. Fernandez Perez13, J. Ferrando45, A. Ferrari168, P. Ferrari109, R. Ferrari123a, D.E. Ferreira de Lima60b, A. Ferrer170, D. Ferrere52, C. Ferretti92, F. Fiedler86, A. Filipcic78, M. Filipuzzi45, F. Filthaut108, M. Fincke-Keeler172, HJEP10(27)8 W.C. Fisher93, N. Flaschel45, I. Fleck143, P. Fleischmann92, R.R.M. Fletcher124, T. Flick178, B.M. Flierl102, L.R. Flores Castillo62a, M.J. Flowerdew103, G.T. Forcolin87, A. Formica138, F.A. Forster13, A. Forti87, A.G. Foster19, D. Fournier119, H. Fox75, S. Fracchia141, P. Francavilla83, M. Franchini22a,22b, S. Franchino60a, D. Francis32, L. Franconi121, M. Franklin59, M. Frate166, M. Fraternali123a,123b, D. Freeborn81, S.M. Fressard-Batraneanu32, B. Freund97, D. Froidevaux32, J.A. Frost122, C. Fukunaga158, T. Fusayasu104, J. Fuster170, C. Gabaldon58, O. Gabizon154, A. Gabrielli22a,22b, A. Gabrielli16, G.P. Gach41a, S. Gadatsch32, S. Gadomski80, G. Gagliardi53a,53b, L.G. Gagnon97, C. Galea108, B. Galhardo128a,128c, E.J. Gallas122, B.J. Gallop133, P. Gallus130, G. Galster39, K.K. Gan113, S. Ganguly37, Y. Gao77, Y.S. Gao145;g, F.M. Garay Walls49, C. Garc a170, J.E. Garc a Navarro170, J.A. Garc a Pascual35a, M. Garcia-Sciveres16, R.W. Gardner33, N. Garelli145, V. Garonne121, A. Gascon Bravo45, K. Gasnikova45, C. Gatti50, A. Gaudiello53a,53b, G. Gaudio123a, I.L. Gavrilenko98, C. Gay171, G. Gaycken23, E.N. Gazis10, C.N.P. Gee133, J. Geisen57, M. Geisen86, M.P. Geisler60a, K. Gellerstedt148a,148b, C. Gemme53a, M.H. Genest58, C. Geng92, S. Gentile134a,134b, C. Gentsos156, S. George80, D. Gerbaudo13, A. Gershon155, G. Ge ner46, S. Ghasemi143, M. Ghneimat23, B. Giacobbe22a, S. Giagu134a,134b, N. Giangiacomi22a,22b, P. Giannetti126a,126b, S.M. Gibson80, M. Gignac171, M. Gilchriese16, D. Gillberg31, G. Gilles178, D.M. Gingrich3;d, N. Giokaris9; , M.P. Giordani167a,167c, F.M. Giorgi22a, P.F. Giraud138, P. Giromini59, G. Giugliarelli167a,167c, D. Giugni94a, F. Giuli122, C. Giuliani103, M. Giulini60b, B.K. Gjelsten121, S. Gkaitatzis156, I. Gkialas9;s, E.L. Gkougkousis139, P. Gkountoumis10, L.K. Gladilin101, C. Glasman85, J. Glatzer13, P.C.F. Glaysher45, A. Glazov45, M. Goblirsch-Kolb25, J. Godlewski42, S. Goldfarb91, T. Golling52, D. Golubkov132, A. Gomes128a,128b,128d, R. Goncalo128a, R. Goncalves Gama26a, J. Goncalves Pinto Firmino Da Costa138, G. Gonella51, L. Gonella19, A. Gongadze68, S. Gonzalez de la Hoz170, S. Gonzalez-Sevilla52, L. Goossens32, P.A. Gorbounov99, H.A. Gordon27, I. Gorelov107, B. Gorini32, E. Gorini76a,76b, A. Gorisek78, A.T. Goshaw48, C. Gossling46, M.I. Gostkin68, C.A. Gottardo23, C.R. Goudet119, D. Goujdami137c, A.G. Goussiou140, N. Govender147b;t, E. Gozani154, L. Graber57, I. Grabowska-Bold41a, P.O.J. Gradin168, J. Gramling166, E. Gramstad121, S. Grancagnolo17, V. Gratchev125, P.M. Gravila28f, C. Gray56, H.M. Gray16, Z.D. Greenwood82;u, C. Grefe23, K. Gregersen81, I.M. Gregor45, P. Grenier145, K. Grevtsov5, J. Gri ths8, A.A. Grillo139, K. Grimm75, S. Grinstein13;v, Ph. Gris37, J.-F. Grivaz119, S. Groh86, E. Gross175, J. Grosse-Knetter57, G.C. Grossi82, Z.J. Grout81, A. Grummer107, L. Guan92, W. Guan176, J. Guenther65, F. Guescini163a, D. Guest166, O. Gueta155, B. Gui113, E. Guido53a,53b, T. Guillemin5, S. Guindon2, U. Gul56, C. Gumpert32, J. Guo36c, W. Guo92, Y. Guo36a, R. Gupta43, S. Gupta122, G. Gustavino115, P. Gutierrez115, N.G. Gutierrez Ortiz81, C. Gutschow81, C. Guyot138, M.P. Guzik41a, C. Gwenlan122, C.B. Gwilliam77, A. Haas112, C. Haber16, H.K. Hadavand8, N. Haddad137e, A. Hadef88, S. Hagebock23, M. Hagihara164, H. Hakobyan180; , M. Haleem45, J. Haley116, G. Halladjian93, G.D. Hallewell88, K. Hamacher178, P. Hamal117, K. Hamano172, A. Hamilton147a, G.N. Hamity141, P.G. Hamnett45, L. Han36a, S. Han35a, K. Hanagaki69;w, K. Hanawa157, M. Hance139, B. Haney124, P. Hanke60a, J.B. Hansen39, J.D. Hansen39, M.C. Hansen23, P.H. Hansen39, K. Hara164, A.S. Hard176, T. Harenberg178, F. Hariri119, S. Harkusha95, R.D. Harrington49, P.F. Harrison173, N.M. Hartmann102, M. Hasegawa70, Y. Hasegawa142, A. Hasib49, S. Hassani138, S. Haug18, R. Hauser93, L. Hauswald47, L.B. Havener38, M. Havranek130, C.M. Hawkes19, R.J. Hawkings32, D. Hayakawa159, D. Hayden93, C.P. Hays122, J.M. Hays79, H.S. Hayward77, S.J. Haywood133, S.J. Head19, T. Heck86, V. Hedberg84, L. Heelan8, S. Heer23, K.K. Heidegger51, S. Heim45, T. Heim16, B. Heinemann45;x, J.J. Heinrich102, L. Heinrich112, C. Heinz55, J. Hejbal129, HJEP10(27)8 S. Henkelmann171, A.M. Henriques Correia32, S. Henrot-Versille119, G.H. Herbert17, H. Herde25, V. Herget177, Y. Hernandez Jimenez147c, H. Herr86, G. Herten51, R. Hertenberger102, L. Hervas32, T.C. Herwig124, G.G. Hesketh81, N.P. Hessey163a, J.W. Hetherly43, S. Higashino69, E. Higon-Rodriguez170, K. Hildebrand33, E. Hill172, J.C. Hill30, K.H. Hiller45, S.J. Hillier19, M. Hils47, I. Hinchli e16, M. Hirose51, D. Hirschbuehl178, B. Hiti78, O. Hladik129, X. Hoad49, J. Hobbs150, N. Hod163a, M.C. Hodgkinson141, P. Hodgson141, A. Hoecker32, M.R. Hoeferkamp107, F. Hoenig102, D. Hohn23, T.R. Holmes33, M. Homann46, S. Honda164, T. Honda69, T.M. Hong127, B.H. Hooberman169, W.H. Hopkins118, Y. Horii105, A.J. Horton144, J-Y. Hostachy58, S. Hou153, A. Hoummada137a, J. Howarth87, J. Hoya74, M. Hrabovsky117, J. Hrdinka32, I. Hristova17, J. Hrivnac119, T. Hryn'ova5, A. Hrynevich96, P.J. Hsu63, S.-C. Hsu140, Q. Hu36a, S. Hu36c, Y. Huang35a, Z. Hubacek130, F. Hubaut88, F. Huegging23, T.B. Hu man122, E.W. Hughes38, G. Hughes75, M. Huhtinen32, P. Huo150, N. Huseynov68;b, J. Huston93, J. Huth59, G. Iacobucci52, G. Iakovidis27, I. Ibragimov143, L. Iconomidou-Fayard119, Z. Idrissi137e, P. Iengo32, O. Igonkina109;y, T. Iizawa174, Y. Ikegami69, M. Ikeno69, Y. Ilchenko11;z, D. Iliadis156, N. Ilic145, G. Introzzi123a,123b, P. Ioannou9; , M. Iodice136a, K. Iordanidou38, V. Ippolito59, M.F. Isacson168, N. Ishijima120, M. Ishino157, M. Ishitsuka159, C. Issever122, S. Istin20a, F. Ito164, J.M. Iturbe Ponce62a, R. Iuppa162a,162b, H. Iwasaki69, J.M. Izen44, V. Izzo106a, S. Jabbar3, P. Jackson1, R.M. Jacobs23, V. Jain2, K.B. Jakobi86, K. Jakobs51, S. Jakobsen65, T. Jakoubek129, D.O. Jamin116, D.K. Jana82, R. Jansky52, J. Janssen23, M. Janus57, P.A. Janus41a, G. Jarlskog84, N. Javadov68;b, T. Javurek51, M. Javurkova51, F. Jeanneau138, L. Jeanty16, J. Jejelava54a;aa, A. Jelinskas173, P. Jenni51;ab, C. Jeske173, S. Jezequel5, H. Ji176, J. Jia150, H. Jiang67, Y. Jiang36a, Z. Jiang145, S. Jiggins81, J. Jimenez Pena170, S. Jin35a, A. Jinaru28b, O. Jinnouchi159, H. Jivan147c, P. Johansson141, K.A. Johns7, C.A. Johnson64, W.J. Johnson140, K. Jon-And148a,148b, R.W.L. Jones75, S.D. Jones151, S. Jones7, T.J. Jones77, J. Jongmanns60a, P.M. Jorge128a,128b, J. Jovicevic163a, X. Ju176, A. Juste Rozas13;v, M.K. Kohler175, A. Kaczmarska42, M. Kado119, H. Kagan113, M. Kagan145, S.J. Kahn88, T. Kaji174, E. Kajomovitz48, C.W. Kalderon84, A. Kaluza86, S. Kama43, A. Kamenshchikov132, N. Kanaya157, L. Kanjir78, V.A. Kantserov100, J. Kanzaki69, B. Kaplan112, L.S. Kaplan176, D. Kar147c, K. Karakostas10, N. Karastathis10, M.J. Kareem57, E. Karentzos10, S.N. Karpov68, Z.M. Karpova68, K. Karthik112, V. Kartvelishvili75, A.N. Karyukhin132, K. Kasahara164, L. Kashif176, R.D. Kass113, A. Kastanas149, Y. Kataoka157, C. Kato157, A. Katre52, J. Katzy45, K. Kawade70, K. Kawagoe73, T. Kawamoto157, G. Kawamura57, E.F. Kay77, V.F. Kazanin111;c, R. Keeler172, R. Kehoe43, J.S. Keller31, E. Kellermann84, J.J. Kempster80, J Kendrick19, H. Keoshkerian161, O. Kepka129, B.P. Kersevan78, S. Kersten178, R.A. Keyes90, M. Khader169, F. Khalil-zada12, A. Khanov116, A.G. Kharlamov111;c, T. Kharlamova111;c, E.E. Khoda171, A. Khodinov160, T.J. Khoo52, V. Khovanskiy99; , E. Khramov68, J. Khubua54b;ac, S. Kido70, C.R. Kilby80, H.Y. Kim8, S.H. Kim164, Y.K. Kim33, N. Kimura156, O.M. Kind17, B.T. King77, D. Kirchmeier47, J. Kirk133, A.E. Kiryunin103, T. Kishimoto157, D. Kisielewska41a, V. Kitali45, K. Kiuchi164, O. Kivernyk5, E. Kladiva146b, T. Klapdor-Kleingrothaus51, M.H. Klein38, M. Klein77, U. Klein77, K. Kleinknecht86, P. Klimek110, A. Klimentov27, R. Klingenberg46, T. Klingl23, T. Klioutchnikova32, E.-E. Kluge60a, P. Kluit109, S. Kluth103, E. Kneringer65, E.B.F.G. Knoops88, A. Knue103, A. Kobayashi157, D. Kobayashi159, T. Kobayashi157, M. Kobel47, M. Kocian145, P. Kodys131, T. Ko as31, E. Ko eman109, N.M. Kohler103, T. Koi145, M. Kolb60b, I. Koletsou5, A.A. Komar98; , Y. Komori157, T. Kondo69, N. Kondrashova36c, K. Koneke51, A.C. Konig108, T. Kono69;ad, R. Konoplich112;ae, N. Konstantinidis81, R. Kopeliansky64, S. Koperny41a, A.K. Kopp51, K. Korcyl42, K. Kordas156, A. Korn81, HJEP10(27)8 V.V. Kostyukhin23, A. Kotwal48, A. Koulouris10, A. Kourkoumeli-Charalampidi123a,123b, C. Kourkoumelis9, E. Kourlitis141, V. Kouskoura27, A.B. Kowalewska42, R. Kowalewski172, T.Z. Kowalski41a, C. Kozakai157, W. Kozanecki138, A.S. Kozhin132, V.A. Kramarenko101, G. Kramberger78, D. Krasnopevtsev100, M.W. Krasny83, A. Krasznahorkay32, D. Krauss103, J.A. Kremer41a, J. Kretzschmar77, K. Kreutzfeldt55, P. Krieger161, K. Krizka33, K. Kroeninger46, H. Kroha103, J. Kroll129, J. Kroll124, J. Kroseberg23, J. Krstic14, U. Kruchonak68, H. Kruger23, N. Krumnack67, M.C. Kruse48, T. Kubota91, H. Kucuk81, S. Kuday4b, J.T. Kuechler178, S. Kuehn32, A. Kugel60a, F. Kuger177, T. Kuhl45, V. Kukhtin68, R. Kukla88, Y. Kulchitsky95, S. Kuleshov34b, Y.P. Kulinich169, M. Kuna134a,134b, T. Kunigo71, A. Kupco129, T. Kupfer46, O. Kuprash155, H. Kurashige70, L.L. Kurchaninov163a, Y.A. Kurochkin95, M.G. Kurth35a, V. Kus129, E.S. Kuwertz172, M. Kuze159, J. Kvita117, T. Kwan172, D. Kyriazopoulos141, A. La Rosa103, J.L. La Rosa Navarro26d, L. La Rotonda40a,40b, F. La Ru a40a,40b, C. Lacasta170, F. Lacava134a,134b, J. Lacey45, H. Lacker17, D. Lacour83, E. Ladygin68, R. Lafaye5, B. Laforge83, T. Lagouri179, S. Lai57, S. Lammers64, W. Lampl7, E. Lancon27, U. Landgraf51, M.P.J. Landon79, M.C. Lanfermann52, V.S. Lang60a, J.C. Lange13, R.J. Langenberg32, A.J. Lankford166, F. Lanni27, K. Lantzsch23, A. Lanza123a, A. Lapertosa53a,53b, S. Laplace83, J.F. Laporte138, T. Lari94a, F. Lasagni Manghi22a,22b, M. Lassnig32, P. Laurelli50, W. Lavrijsen16, A.T. Law139, P. Laycock77, T. Lazovich59, M. Lazzaroni94a,94b, B. Le91, O. Le Dortz83, E. Le Guirriec88, E.P. Le Quilleuc138, M. LeBlanc172, T. LeCompte6, F. Ledroit-Guillon58, C.A. Lee27, G.R. Lee133;af , S.C. Lee153, L. Lee59, B. Lefebvre90, G. Lefebvre83, M. Lefebvre172, F. Legger102, C. Leggett16, G. Lehmann Miotto32, X. Lei7, W.A. Leight45, M.A.L. Leite26d, R. Leitner131, D. Lellouch175, B. Lemmer57, K.J.C. Leney81, T. Lenz23, B. Lenzi32, R. Leone7, S. Leone126a,126b, C. Leonidopoulos49, G. Lerner151, C. Leroy97, A.A.J. Lesage138, C.G. Lester30, M. Levchenko125, J. Lev^eque5, D. Levin92, L.J. Levinson175, M. Levy19, D. Lewis79, B. Li36a;ag, Changqiao Li36a, H. Li150, L. Li36c, Q. Li35a, S. Li48, X. Li36c, Y. Li143, Z. Liang35a, B. Liberti135a, A. Liblong161, K. Lie62c, J. Liebal23, W. Liebig15, A. Limosani152, S.C. Lin182, T.H. Lin86, R.A. Linck64, B.E. Lindquist150, A.E. Lionti52, E. Lipeles124, A. Lipniacka15, M. Lisovyi60b, T.M. Liss169;ah, A. Lister171, A.M. Litke139, B. Liu153;ai, H. Liu92, H. Liu27, J.K.K. Liu122, J. Liu36b, J.B. Liu36a, K. Liu88, L. Liu169, M. Liu36a, Y.L. Liu36a, Y. Liu36a, M. Livan123a,123b, A. Lleres58, J. Llorente Merino35a, S.L. Lloyd79, C.Y. Lo62b, F. Lo Sterzo153, E.M. Lobodzinska45, P. Loch7, F.K. Loebinger87, A. Loesle51, K.M. Loew25, A. Loginov179; , T. Lohse17, K. Lohwasser141, M. Lokajicek129, B.A. Long24, J.D. Long169, R.E. Long75, L. Longo76a,76b, K.A. Looper113, J.A. Lopez34b, D. Lopez Mateos59, I. Lopez Paz13, A. Lopez Solis83, J. Lorenz102, N. Lorenzo Martinez5, M. Losada21, P.J. Losel102, X. Lou35a, A. Lounis119, J. Love6, P.A. Love75, H. Lu62a, N. Lu92, Y.J. Lu63, H.J. Lubatti140, C. Luci134a,134b, A. Lucotte58, C. Luedtke51, F. Luehring64, W. Lukas65, L. Luminari134a, O. Lundberg148a,148b, B. Lund-Jensen149, M.S. Lutz89, P.M. Luzi83, D. Lynn27, R. Lysak129, E. Lytken84, F. Lyu35a, V. Lyubushkin68, H. Ma27, L.L. Ma36b, Y. Ma36b, G. Maccarrone50, A. Macchiolo103, C.M. Macdonald141, B. Macek78, J. Machado Miguens124,128b, D. Mada ari170, R. Madar37, W.F. Mader47, A. Madsen45, J. Maeda70, S. Maeland15, T. Maeno27, A.S. Maevskiy101, V. Magerl51, J. Mahlstedt109, C. Maiani119, C. Maidantchik26a, A.A. Maier103, T. Maier102, A. Maio128a,128b,128d, O. Majersky146a, S. Majewski118, Y. Makida69, N. Makovec119, B. Malaescu83, Pa. Malecki42, V.P. Maleev125, F. Malek58, U. Mallik66, D. Malon6, C. Malone30, S. Maltezos10, S. Malyukov32, J. Mamuzic170, G. Mancini50, I. Mandic78, J. Maneira128a,128b, L. Manhaes de Andrade Filho26b, J. Manjarres Ramos47, K.H. Mankinen84, A. Mann102, A. Manousos32, B. Mansoulie138, J.D. Mansour35a, R. Mantifel90, M. Mantoani57, S. Manzoni94a,94b, L. Mapelli32, G. Marceca29, L. March52, L. Marchese122, HJEP10(27)8 S.P. Marsden87, Z. Marshall16, M.U.F Martensson168, S. Marti-Garcia170, C.B. Martin113, T.A. Martin173, V.J. Martin49, B. Martin dit Latour15, M. Martinez13;v, V.I. Martinez Outschoorn169, S. Martin-Haugh133, V.S. Martoiu28b, A.C. Martyniuk81, A. Marzin32, L. Masetti86, T. Mashimo157, R. Mashinistov98, J. Masik87, A.L. Maslennikov111;c, L. Massa135a,135b, P. Mastrandrea5, A. Mastroberardino40a,40b, T. Masubuchi157, P. Mattig178, J. Maurer28b, S.J. Max eld77, D.A. Maximov111;c, R. Mazini153, I. Maznas156, S.M. Mazza94a,94b, N.C. Mc Fadden107, G. Mc Goldrick161, S.P. Mc Kee92, A. McCarn92, R.L. McCarthy150, T.G. McCarthy103, L.I. McClymont81, E.F. McDonald91, J.A. Mcfayden81, G. Mchedlidze57, S.J. McMahon133, P.C. McNamara91, R.A. McPherson172;o, S. Meehan140, T.J. Megy51, S. Mehlhase102, A. Mehta77, T. Meideck58, K. Meier60a, B. Meirose44, D. Melini170;aj , B.R. Mellado Garcia147c, J.D. Mellenthin57, M. Melo146a, F. Meloni18, A. Melzer23, S.B. Menary87, L. Meng77, X.T. Meng92, A. Mengarelli22a,22b, S. Menke103, E. Meoni40a,40b, S. Mergelmeyer17, P. Mermod52, L. Merola106a,106b, C. Meroni94a, F.S. Merritt33, A. Messina134a,134b, J. Metcalfe6, A.S. Mete166, C. Meyer124, J-P. Meyer138, J. Meyer109, H. Meyer Zu Theenhausen60a, F. Miano151, R.P. Middleton133, S. Miglioranzi53a,53b, L. Mijovic49, G. Mikenberg175, M. Mikestikova129, M. Mikuz78, M. Milesi91, A. Milic161, D.W. Miller33, C. Mills49, A. Milov175, D.A. Milstead148a,148b, A.A. Minaenko132, Y. Minami157, I.A. Minashvili68, A.I. Mincer112, B. Mindur41a, M. Mineev68, Y. Minegishi157, Y. Ming176, L.M. Mir13, K.P. Mistry124, T. Mitani174, J. Mitrevski102, V.A. Mitsou170, A. Miucci18, P.S. Miyagawa141, A. Mizukami69, J.U. Mjornmark84, T. Mkrtchyan180, M. Mlynarikova131, T. Moa148a,148b, K. Mochizuki97, P. Mogg51, S. Mohapatra38, S. Molander148a,148b, R. Moles-Valls23, R. Monden71, M.C. Mondragon93, K. Monig45, J. Monk39, E. Monnier88, A. Montalbano150, J. Montejo Berlingen32, F. Monticelli74, S. Monzani94a,94b, R.W. Moore3, N. Morange119, D. Moreno21, M. Moreno Llacer32, P. Morettini53a, S. Morgenstern32, D. Mori144, T. Mori157, M. Morii59, M. Morinaga157, V. Morisbak121, A.K. Morley32, G. Mornacchi32, J.D. Morris79, L. Morvaj150, P. Moschovakos10, M. Mosidze54b, H.J. Moss141, J. Moss145;ak, K. Motohashi159, R. Mount145, E. Mountricha27, E.J.W. Moyse89, S. Muanza88, F. Mueller103, J. Mueller127, R.S.P. Mueller102, D. Muenstermann75, P. Mullen56, G.A. Mullier18, F.J. Munoz Sanchez87, W.J. Murray173,133, H. Musheghyan32, M. Muskinja78, A.G. Myagkov132;al, M. Myska130, B.P. Nachman16, O. Nackenhorst52, K. Nagai122, R. Nagai69;ad, K. Nagano69, Y. Nagasaka61, K. Nagata164, M. Nagel51, E. Nagy88, A.M. Nairz32, Y. Nakahama105, K. Nakamura69, T. Nakamura157, I. Nakano114, R.F. Naranjo Garcia45, R. Narayan11, D.I. Narrias Villar60a, I. Naryshkin125, T. Naumann45, G. Navarro21, R. Nayyar7, H.A. Neal92, P.Yu. Nechaeva98, T.J. Neep138, A. Negri123a,123b, M. Negrini22a, S. Nektarijevic108, C. Nellist119, A. Nelson166, M.E. Nelson122, S. Nemecek129, P. Nemethy112, M. Nessi32;am, M.S. Neubauer169, M. Neumann178, P.R. Newman19, T.Y. Ng62c, T. Nguyen Manh97, R.B. Nickerson122, R. Nicolaidou138, J. Nielsen139, V. Nikolaenko132;al, I. Nikolic-Audit83, K. Nikolopoulos19, J.K. Nilsen121, P. Nilsson27, Y. Ninomiya157, A. Nisati134a, N. Nishu35c, R. Nisius103, I. Nitsche46, T. Nitta174, T. Nobe157, Y. Noguchi71, M. Nomachi120, I. Nomidis31, M.A. Nomura27, T. Nooney79, M. Nordberg32, N. Norjoharuddeen122, O. Novgorodova47, S. Nowak103, M. Nozaki69, L. Nozka117, K. Ntekas166, E. Nurse81, F. Nuti91, K. O'connor25, D.C. O'Neil144, A.A. O'Rourke45, V. O'Shea56, F.G. Oakham31;d, H. Oberlack103, T. Obermann23, J. Ocariz83, A. Ochi70, I. Ochoa38, J.P. Ochoa-Ricoux34a, S. Oda73, S. Odaka69, A. Oh87, S.H. Oh48, C.C. Ohm16, H. Ohman168, H. Oide53a,53b, H. Okawa164, Y. Okumura157, T. Okuyama69, A. Olariu28b, L.F. Oleiro Seabra128a, S.A. Olivares Pino34a, D. Oliveira Damazio27, A. Olszewski42, J. Olszowska42, A. Onofre128a,128e, K. Onogi105, P.U.E. Onyisi11;z, H. Oppen121, M.J. Oreglia33, Y. Oren155, D. Orestano136a,136b, N. Orlando62b, HJEP10(27)8 M. Ouchrif137d, F. Ould-Saada121, A. Ouraou138, K.P. Oussoren109, Q. Ouyang35a, M. Owen56, R.E. Owen19, V.E. Ozcan20a, N. Ozturk8, K. Pachal144, A. Pacheco Pages13, L. Pacheco Rodriguez138, C. Padilla Aranda13, S. Pagan Griso16, M. Paganini179, F. Paige27, G. Palacino64, S. Palazzo40a,40b, S. Palestini32, M. Palka41b, D. Pallin37, E.St. Panagiotopoulou10, I. Panagoulias10, C.E. Pandini126a,126b, J.G. Panduro Vazquez80, P. Pani32, S. Panitkin27, D. Pantea28b, L. Paolozzi52, Th.D. Papadopoulou10, K. Papageorgiou9;s, A. Paramonov6, D. Paredes Hernandez179, A.J. Parker75, M.A. Parker30, K.A. Parker45, F. Parodi53a,53b, J.A. Parsons38, U. Parzefall51, V.R. Pascuzzi161, J.M. Pasner139, E. Pasqualucci134a, S. Passaggio53a, Fr. Pastore80, S. Pataraia86, J.R. Pater87, T. Pauly32, B. Pearson103, S. Pedraza Lopez170, R. Pedro128a,128b, S.V. Peleganchuk111;c, O. Penc129, C. Peng35a, H. Peng36a, J. Penwell64, B.S. Peralva26b, M.M. Perego138, D.V. Perepelitsa27, F. Peri17, L. Perini94a,94b, H. Pernegger32, S. Perrella106a,106b, R. Peschke45, V.D. Peshekhonov68; , K. Peters45, R.F.Y. Peters87, B.A. Petersen32, T.C. Petersen39, E. Petit58, A. Petridis1, C. Petridou156, P. Petro 119, E. Petrolo134a, M. Petrov122, F. Petrucci136a,136b, N.E. Pettersson89, A. Peyaud138, R. Pezoa34b, F.H. Phillips93, P.W. Phillips133, G. Piacquadio150, E. Pianori173, A. Picazio89, E. Piccaro79, M.A. Pickering122, R. Piegaia29, J.E. Pilcher33, A.D. Pilkington87, A.W.J. Pin87, M. Pinamonti135a,135b, J.L. Pinfold3, H. Pirumov45, M. Pitt175, L. Plazak146a, M.-A. Pleier27, V. Pleskot86, E. Plotnikova68, D. Pluth67, P. Podberezko111, R. Poettgen84, R. Poggi123a,123b, L. Poggioli119, D. Pohl23, G. Polesello123a, A. Poley45, A. Policicchio40a,40b, R. Polifka32, A. Polini22a, C.S. Pollard56, V. Polychronakos27, K. Pommes32, D. Ponomarenko100, L. Pontecorvo134a, G.A. Popeneciu28d, S. Pospisil130, K. Potamianos16, I.N. Potrap68, C.J. Potter30, T. Poulsen84, J. Poveda32, M.E. Pozo Astigarraga32, P. Pralavorio88, A. Pranko16, S. Prell67, D. Price87, M. Primavera76a, S. Prince90, N. Proklova100, K. Proko ev62c, F. Prokoshin34b, S. Protopopescu27, J. Proudfoot6, M. Przybycien41a, A. Puri169, P. Puzo119, J. Qian92, G. Qin56, Y. Qin87, A. Quadt57, M. Queitsch-Maitland45, D. Quilty56, S. Raddum121, V. Radeka27, V. Radescu122, S.K. Radhakrishnan150, P. Radlo 118, P. Rados91, F. Ragusa94a,94b, G. Rahal181, J.A. Raine87, S. Rajagopalan27, C. Rangel-Smith168, T. Rashid119, S. Raspopov5, M.G. Ratti94a,94b, D.M. Rauch45, F. Rauscher102, S. Rave86, I. Ravinovich175, J.H. Rawling87, M. Raymond32, A.L. Read121, N.P. Readio 58, M. Reale76a,76b, D.M. Rebuzzi123a,123b, A. Redelbach177, G. Redlinger27, R. Reece139, R.G. Reed147c, K. Reeves44, L. Rehnisch17, J. Reichert124, A. Reiss86, C. Rembser32, H. Ren35a, M. Rescigno134a, S. Resconi94a, E.D. Resseguie124, S. Rettie171, E. Reynolds19, O.L. Rezanova111;c, P. Reznicek131, R. Rezvani97, R. Richter103, S. Richter81, E. Richter-Was41b, O. Ricken23, M. Ridel83, P. Rieck103, C.J. Riegel178, J. Rieger57, O. Rifki115, M. Rijssenbeek150, A. Rimoldi123a,123b, M. Rimoldi18, L. Rinaldi22a, G. Ripellino149, B. Ristic32, E. Ritsch32, I. Riu13, F. Rizatdinova116, E. Rizvi79, C. Rizzi13, R.T. Roberts87, S.H. Robertson90;o, A. Robichaud-Veronneau90, D. Robinson30, J.E.M. Robinson45, A. Robson56, E. Rocco86, C. Roda126a,126b, Y. Rodina88;an, S. Rodriguez Bosca170, A. Rodriguez Perez13, D. Rodriguez Rodriguez170, S. Roe32, C.S. Rogan59, O. R hne121, J. Rolo 59, A. Romaniouk100, M. Romano22a,22b, S.M. Romano Saez37, E. Romero Adam170, N. Rompotis77, M. Ronzani51, L. Roos83, S. Rosati134a, K. Rosbach51, P. Rose139, N.-A. Rosien57, E. Rossi106a,106b, L.P. Rossi53a, J.H.N. Rosten30, R. Rosten140, M. Rotaru28b, J. Rothberg140, D. Rousseau119, A. Rozanov88, Y. Rozen154, X. Ruan147c, F. Rubbo145, F. Ruhr51, A. Ruiz-Martinez31, Z. Rurikova51, N.A. Rusakovich68, H.L. Russell90, J.P. Rutherfoord7, N. Ruthmann32, Y.F. Ryabov125, M. Rybar169, G. Rybkin119, S. Ryu6, A. Ryzhov132, G.F. Rzehorz57, A.F. Saavedra152, G. Sabato109, S. Sacerdoti29, H.F-W. Sadrozinski139, R. Sadykov68, F. Safai Tehrani134a, P. Saha110, M. Sahinsoy60a, M. Saimpert45, M. Saito157, T. Saito157, HJEP10(27)8 P.H. Sales De Bruin168, D. Salihagic103, A. Salnikov145, J. Salt170, D. Salvatore40a,40b, F. Salvatore151, A. Salvucci62a,62b,62c, A. Salzburger32, D. Sammel51, D. Sampsonidis156, D. Sampsonidou156, J. Sanchez170, V. Sanchez Martinez170, A. Sanchez Pineda167a,167c, H. Sandaker121, R.L. Sandbach79, C.O. Sander45, M. Sandho 178, C. Sandoval21, D.P.C. Sankey133, M. Sannino53a,53b, Y. Sano105, A. Sansoni50, C. Santoni37, H. Santos128a, I. Santoyo Castillo151, A. Sapronov68, J.G. Saraiva128a,128d, B. Sarrazin23, O. Sasaki69, K. Sato164, E. Sauvan5, G. Savage80, P. Savard161;d, N. Savic103, C. Sawyer133, L. Sawyer82;u, J. Saxon33, C. Sbarra22a, A. Sbrizzi22a,22b, T. Scanlon81, D.A. Scannicchio166, M. Scarcella152, J. Schaarschmidt140, P. Schacht103, B.M. Schachtner102, D. Schaefer32, L. Schaefer124, R. Schaefer45, J. Schae er86, S. Schaepe23, S. Schaetzel60b, U. Schafer86, A.C. Scha er119, D. Schaile102, R.D. Schamberger150, V.A. Schegelsky125, D. Scheirich131, M. Schernau166, C. Schiavi53a,53b, S. Schier139, L.K. Schildgen23, C. Schillo51, M. Schioppa40a,40b, S. Schlenker32, K.R. Schmidt-Sommerfeld103, K. Schmieden32, C. Schmitt86, S. Schmitt45, S. Schmitz86, U. Schnoor51, L. Schoe el138, A. Schoening60b, B.D. Schoenrock93, E. Schopf23, M. Schott86, J.F.P. Schouwenberg108, J. Schovancova32, S. Schramm52, N. Schuh86, A. Schulte86, M.J. Schultens23, H.-C. Schultz-Coulon60a, H. Schulz17, M. Schumacher51, B.A. Schumm139, Ph. Schune138, A. Schwartzman145, T.A. Schwarz92, H. Schweiger87, Ph. Schwemling138, R. Schwienhorst93, J. Schwindling138, A. Sciandra23, G. Sciolla25, M. Scornajenghi40a,40b, F. Scuri126a,126b, F. Scutti91, J. Searcy92, P. Seema23, S.C. Seidel107, A. Seiden139, J.M. Seixas26a, G. Sekhniaidze106a, K. Sekhon92, S.J. Sekula43, N. Semprini-Cesari22a,22b, S. Senkin37, C. Serfon121, L. Serin119, L. Serkin167a,167b, M. Sessa136a,136b, R. Seuster172, H. Severini115, T. S ligoj78, F. Sforza32, A. Sfyrla52, E. Shabalina57, N.W. Shaikh148a,148b, L.Y. Shan35a, R. Shang169, J.T. Shank24, M. Shapiro16, P.B. Shatalov99, K. Shaw167a,167b, S.M. Shaw87, A. Shcherbakova148a,148b, C.Y. Shehu151, Y. Shen115, N. Sherafati31, P. Sherwood81, L. Shi153;ao, S. Shimizu70, C.O. Shimmin179, M. Shimojima104, I.P.J. Shipsey122, S. Shirabe73, M. Shiyakova68;ap, J. Shlomi175, A. Shmeleva98, D. Shoaleh Saadi97, M.J. Shochet33, S. Shojaii94a, D.R. Shope115, S. Shrestha113, E. Shulga100, M.A. Shupe7, P. Sicho129, A.M. Sickles169, P.E. Sidebo149, E. Sideras Haddad147c, O. Sidiropoulou177, A. Sidoti22a,22b, F. Siegert47, Dj. Sijacki14, J. Silva128a,128d, S.B. Silverstein148a, V. Simak130, Lj. Simic14, S. Simion119, E. Simioni86, B. Simmons81, M. Simon86, P. Sinervo161, N.B. Sinev118, M. Sioli22a,22b, G. Siragusa177, I. Siral92, S.Yu. Sivoklokov101, J. Sjolin148a,148b, M.B. Skinner75, P. Skubic115, M. Slater19, T. Slavicek130, M. Slawinska42, K. Sliwa165, R. Slovak131, V. Smakhtin175, B.H. Smart5, J. Smiesko146a, N. Smirnov100, S.Yu. Smirnov100, Y. Smirnov100, L.N. Smirnova101;aq, O. Smirnova84, J.W. Smith57, M.N.K. Smith38, R.W. Smith38, M. Smizanska75, K. Smolek130, A.A. Snesarev98, I.M. Snyder118, S. Snyder27, R. Sobie172;o, F. Socher47, A. So er155, A. S gaard49, D.A. Soh153, G. Sokhrannyi78, C.A. Solans Sanchez32, M. Solar130, E.Yu. Soldatov100, U. Soldevila170, A.A. Solodkov132, A. Soloshenko68, O.V. Solovyanov132, V. Solovyev125, P. Sommer51, H. Son165, A. Sopczak130, D. Sosa60b, C.L. Sotiropoulou126a,126b, R. Soualah167a,167c, A.M. Soukharev111;c, D. South45, B.C. Sowden80, S. Spagnolo76a,76b, M. Spalla126a,126b, M. Spangenberg173, F. Spano80, D. Sperlich17, F. Spettel103, T.M. Spieker60a, R. Spighi22a, G. Spigo32, L.A. Spiller91, M. Spousta131, R.D. St. Denis56; , A. Stabile94a, R. Stamen60a, S. Stamm17, E. Stanecka42, R.W. Stanek6, C. Stanescu136a, M.M. Stanitzki45, B.S. Stapf109, S. Stapnes121, E.A. Starchenko132, G.H. Stark33, J. Stark58, S.H Stark39, P. Staroba129, P. Starovoitov60a, S. Starz32, R. Staszewski42, P. Steinberg27, B. Stelzer144, H.J. Stelzer32, O. Stelzer-Chilton163a, H. Stenzel55, G.A. Stewart56, M.C. Stockton118, M. Stoebe90, G. Stoicea28b, P. Stolte57, S. Stonjek103, A.R. Stradling8, A. Straessner47, M.E. Stramaglia18, J. Strandberg149, S. Strandberg148a,148b, HJEP10(27)8 S.A. Stucci27, B. Stugu15, N.A. Styles45, D. Su145, J. Su127, S. Suchek60a, Y. Sugaya120, M. Suk130, V.V. Sulin98, DMS Sultan162a,162b, S. Sultansoy4c, T. Sumida71, S. Sun59, X. Sun3, K. Suruliz151, C.J.E. Suster152, M.R. Sutton151, S. Suzuki69, M. Svatos129, M. Swiatlowski33, S.P. Swift2, I. Sykora146a, T. Sykora131, D. Ta51, K. Tackmann45, J. Taenzer155, A. Ta ard166, R. Ta rout163a, E. Tahirovic79, N. Taiblum155, H. Takai27, R. Takashima72, E.H. Takasugi103, T. Takeshita142, Y. Takubo69, M. Talby88, A.A. Talyshev111;c, J. Tanaka157, M. Tanaka159, R. Tanaka119, S. Tanaka69, R. Tanioka70, B.B. Tannenwald113, S. Tapia Araya34b, S. Tapprogge86, S. Tarem154, G.F. Tartarelli94a, P. Tas131, M. Tasevsky129, T. Tashiro71, E. Tassi40a,40b, A. Tavares Delgado128a,128b, Y. Tayalati137e, A.C. Taylor107, G.N. Taylor91, P.T.E. Taylor91, W. Taylor163b, P. Teixeira-Dias80, D. Temple144, H. Ten Kate32, P.K. Teng153, J.J. Teoh120, F. Tepel178, S. Terada69, K. Terashi157, J. Terron85, S. Terzo13, M. Testa50, R.J. Teuscher161;o, T. Theveneaux-Pelzer88, F. Thiele39, J.P. Thomas19, J. Thomas-Wilsker80, P.D. Thompson19, A.S. Thompson56, L.A. Thomsen179, E. Thomson124, M.J. Tibbetts16, R.E. Ticse Torres88, V.O. Tikhomirov98;ar, Yu.A. Tikhonov111;c, S. Timoshenko100, P. Tipton179, S. Tisserant88, K. Todome159, S. Todorova-Nova5, S. Todt47, J. Tojo73, S. Tokar146a, K. Tokushuku69, E. Tolley59, L. Tomlinson87, M. Tomoto105, L. Tompkins145;as, K. Toms107, B. Tong59, P. Tornambe51, E. Torrence118, H. Torres144, E. Torro Pastor140, J. Toth88;at, F. Touchard88, D.R. Tovey141, C.J. Treado112, T. Trefzger177, F. Tresoldi151, A. Tricoli27, I.M. Trigger163a, S. Trincaz-Duvoid83, M.F. Tripiana13, W. Trischuk161, B. Trocme58, A. Trofymov45, C. Troncon94a, M. Trottier-McDonald16, M. Trovatelli172, L. Truong147b, M. Trzebinski42, A. Trzupek42, K.W. Tsang62a, J.C-L. Tseng122, P.V. Tsiareshka95, G. Tsipolitis10, N. Tsirintanis9, S. Tsiskaridze13, V. Tsiskaridze51, E.G. Tskhadadze54a, K.M. Tsui62a, I.I. Tsukerman99, V. Tsulaia16, S. Tsuno69, D. Tsybychev150, Y. Tu62b, A. Tudorache28b, V. Tudorache28b, T.T. Tulbure28a, A.N. Tuna59, S.A. Tupputi22a,22b, S. Turchikhin68, D. Turgeman175, I. Turk Cakir4b;au, R. Turra94a, P.M. Tuts38, G. Ucchielli22a,22b, I. Ueda69, M. Ughetto148a,148b, F. Ukegawa164, G. Unal32, A. Undrus27, G. Unel166, F.C. Ungaro91, Y. Unno69, C. Unverdorben102, J. Urban146b, P. Urquijo91, P. Urrejola86, G. Usai8, J. Usui69, L. Vacavant88, V. Vacek130, B. Vachon90, K.O.H. Vadla121, A. Vaidya81, C. Valderanis102, E. Valdes Santurio148a,148b, M. Valente52, S. Valentinetti22a,22b, A. Valero170, L. Valery13, S. Valkar131, A. Vallier5, J.A. Valls Ferrer170, W. Van Den Wollenberg109, H. van der Graaf109, P. van Gemmeren6, J. Van Nieuwkoop144, I. van Vulpen109, M.C. van Woerden109, M. Vanadia135a,135b, W. Vandelli32, A. Vaniachine160, P. Vankov109, G. Vardanyan180, R. Vari134a, E.W. Varnes7, C. Varni53a,53b, T. Varol43, D. Varouchas119, A. Vartapetian8, K.E. Varvell152, J.G. Vasquez179, G.A. Vasquez34b, F. Vazeille37, T. Vazquez Schroeder90, J. Veatch57, V. Veeraraghavan7, L.M. Veloce161, F. Veloso128a,128c, S. Veneziano134a, A. Ventura76a,76b, M. Venturi172, N. Venturi32, A. Venturini25, V. Vercesi123a, M. Verducci136a,136b, W. Verkerke109, A.T. Vermeulen109, J.C. Vermeulen109, M.C. Vetterli144;d, N. Viaux Maira34b, O. Viazlo84, I. Vichou169; , T. Vickey141, O.E. Vickey Boeriu141, G.H.A. Viehhauser122, S. Viel16, L. Vigani122, M. Villa22a,22b, M. Villaplana Perez94a,94b, E. Vilucchi50, M.G. Vincter31, V.B. Vinogradov68, A. Vishwakarma45, C. Vittori22a,22b, I. Vivarelli151, S. Vlachos10, M. Vogel178, P. Vokac130, G. Volpi126a,126b, H. von der Schmitt103, E. von Toerne23, V. Vorobel131, K. Vorobev100, M. Vos170, R. Voss32, J.H. Vossebeld77, N. Vranjes14, M. Vranjes Milosavljevic14, V. Vrba130, M. Vreeswijk109, R. Vuillermet32, I. Vukotic33, P. Wagner23, W. Wagner178, J. Wagner-Kuhr102, H. Wahlberg74, S. Wahrmund47, J. Wakabayashi105, J. Walder75, R. Walker102, W. Walkowiak143, V. Wallangen148a,148b, C. Wang35b, C. Wang36b;av, F. Wang176, H. Wang16, H. Wang3, J. Wang45, J. Wang152, Q. Wang115, R. Wang6, S.M. Wang153, T. Wang38, HJEP10(27)8 D.R. Wardrope81, A. Washbrook49, P.M. Watkins19, A.T. Watson19, M.F. Watson19, G. Watts140, S. Watts87, B.M. Waugh81, A.F. Webb11, S. Webb86, M.S. Weber18, S.W. Weber177, S.A. Weber31, J.S. Webster6, A.R. Weidberg122, B. Weinert64, J. Weingarten57, M. Weirich86, C. Weiser51, H. Weits109, P.S. Wells32, T. Wenaus27, T. Wengler32, S. Wenig32, N. Wermes23, M.D. Werner67, P. Werner32, M. Wessels60a, T.D. Weston18, K. Whalen118, N.L. Whallon140, A.M. Wharton75, A.S. White92, A. White8, M.J. White1, R. White34b, D. Whiteson166, B.W. Whitmore75, F.J. Wickens133, W. Wiedenmann176, M. Wielers133, C. Wiglesworth39, L.A.M. Wiik-Fuchs51, A. Wildauer103, F. Wilk87, H.G. Wilkens32, H.H. Williams124, S. Williams109, C. Willis93, S. Willocq89, J.A. Wilson19, I. Wingerter-Seez5, E. Winkels151, F. Winklmeier118, O.J. Winston151, B.T. Winter23, M. Wittgen145, M. Wobisch82;u, T.M.H. Wolf109, R. Wol 88, M.W. Wolter42, H. Wolters128a,128c, V.W.S. Wong171, S.D. Worm19, B.K. Wosiek42, J. Wotschack32, K.W. Wozniak42, M. Wu33, S.L. Wu176, X. Wu52, Y. Wu92, T.R. Wyatt87, B.M. Wynne49, S. Xella39, Z. Xi92, L. Xia35c, D. Xu35a, L. Xu27, T. Xu138, B. Yabsley152, S. Yacoob147a, D. Yamaguchi159, Y. Yamaguchi120, A. Yamamoto69, S. Yamamoto157, T. Yamanaka157, M. Yamatani157, K. Yamauchi105, Y. Yamazaki70, Z. Yan24, H. Yang36c, H. Yang16, Y. Yang153, Z. Yang15, W-M. Yao16, Y.C. Yap83, Y. Yasu69, E. Yatsenko5, K.H. Yau Wong23, J. Ye43, S. Ye27, I. Yeletskikh68, E. Yigitbasi24, E. Yildirim86, K. Yorita174, K. Yoshihara124, C. Young145, C.J.S. Young32, J. Yu8, J. Yu67, S.P.Y. Yuen23, I. Yusu 30;ax, B. Zabinski42, G. Zacharis10, R. Zaidan13, A.M. Zaitsev132;al, N. Zakharchuk45, J. Zalieckas15, A. Zaman150, S. Zambito59, D. Zanzi91, C. Zeitnitz178, G. Zemaityte122, A. Zemla41a, J.C. Zeng169, Q. Zeng145, O. Zenin132, T. Zenis146a, D. Zerwas119, D. Zhang92, F. Zhang176, G. Zhang36a;ay, H. Zhang35b, J. Zhang6, L. Zhang51, L. Zhang36a, M. Zhang169, P. Zhang35b, R. Zhang23, R. Zhang36a;av, X. Zhang36b, Y. Zhang35a, Z. Zhang119, X. Zhao43, Y. Zhao36b;az, Z. Zhao36a, A. Zhemchugov68, B. Zhou92, C. Zhou176, L. Zhou43, M. Zhou35a, M. Zhou150, N. Zhou35c, C.G. Zhu36b, H. Zhu35a, J. Zhu92, Y. Zhu36a, X. Zhuang35a, K. Zhukov98, A. Zibell177, D. Zieminska64, N.I. Zimine68, C. Zimmermann86, S. Zimmermann51, Z. Zinonos103, M. Zinser86, M. Ziolkowski143, L. Zivkovic14, G. Zobernig176, A. Zoccoli22a,22b, R. Zou33, M. zur Nedden17, L. Zwalinski32. 1 Department of Physics, University of Adelaide, Adelaide, Australia 2 Physics Department, SUNY Albany, Albany NY, United States of America 3 Department of Physics, University of Alberta, Edmonton AB, Canada 4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey 5 LAPP, CNRS/IN2P3 and Universite Savoie Mont Blanc, Annecy-le-Vieux, France 6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America 7 Department of Physics, University of Arizona, Tucson AZ, United States of America 8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of Barcelona, Spain CA, United States of America 9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece 10 Physics Department, National Technical University of Athens, Zografou, Greece 11 Department of Physics, The University of Texas at Austin, Austin TX, United States of America 12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan 13 Institut de F sica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, 14 Institute of Physics, University of Belgrade, Belgrade, Serbia 15 Department for Physics and Technology, University of Bergen, Bergen, Norway 16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley 18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland 19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (e) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey Bologna, Italy 21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia 22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Universita di Bologna, 23 Physikalisches Institut, University of Bonn, Bonn, Germany 24 Department of Physics, Boston University, Boston MA, United States of America 25 Department of Physics, Brandeis University, Waltham MA, United States of America 26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil 27 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America 28 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania 29 Departamento de F sica, Universidad de Buenos Aires, Buenos Aires, Argentina 30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 31 Department of Physics, Carleton University, Ottawa ON, Canada 32 CERN, Geneva, Switzerland 33 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America 34 (a) Departamento de F sica, Ponti cia Universidad Catolica de Chile, Santiago; (b) Departamento de F sica, Universidad Tecnica Federico Santa Mar a, Valpara so, Chile 35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China 36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics, Shandong University, Shandong; (c) Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai(also at PKU-CHEP), China 37 Universite Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France 38 Nevis Laboratory, Columbia University, Irvington NY, United States of America 39 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark 40 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Universita della Calabria, Rende, Italy 41 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland 42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland 43 Physics Department, Southern Methodist University, Dallas TX, United States of America 44 Physics Department, University of Texas at Dallas, Richardson TX, United States of America 45 DESY, Hamburg and Zeuthen, Germany 46 Lehrstuhl fur Experimentelle Physik IV, Technische Universitat Dortmund, Dortmund, Germany 47 Institut fur Kern- und Teilchenphysik, Technische Universitat Dresden, Dresden, Germany 49 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom 50 INFN e Laboratori Nazionali di Frascati, Frascati, Italy 51 Fakultat fur Mathematik und Physik, Albert-Ludwigs-Universitat, Freiburg, Germany 53 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Universita di Genova, Genova, Italy 54 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia 55 II Physikalisches Institut, Justus-Liebig-Universitat Giessen, Giessen, Germany 56 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom 57 II Physikalisches Institut, Georg-August-Universitat, Gottingen, Germany 59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States 60 (a) Kirchho -Institut fur Physik, Ruprecht-Karls-Universitat Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universitat Heidelberg, Heidelberg, Germany 61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan 62 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China 63 Department of Physics, National Tsing Hua University, Taiwan 64 Department of Physics, Indiana University, Bloomington IN, United States of America 65 Institut fur Astro- und Teilchenphysik, Leopold-Franzens-Universitat, Innsbruck, Austria 66 University of Iowa, Iowa City IA, United States of America 67 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America 68 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia 69 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan 70 Graduate School of Science, Kobe University, Kobe, Japan 71 Faculty of Science, Kyoto University, Kyoto, Japan 72 Kyoto University of Education, Kyoto, Japan 73 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan Italy 74 Instituto de F sica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina 75 Physics Department, Lancaster University, Lancaster, United Kingdom 76 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Universita del Salento, Lecce, 77 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom 78 Department of Experimental Particle Physics, Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia 79 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom 80 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom 81 Department of Physics and Astronomy, University College London, London, United Kingdom 82 Louisiana Tech University, Ruston LA, United States of America 83 Laboratoire de Physique Nucleaire et de Hautes Energies, UPMC and Universite Paris-Diderot and CNRS/IN2P3, Paris, France 84 Fysiska institutionen, Lunds universitet, Lund, Sweden 85 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain 86 Institut fur Physik, Universitat Mainz, Mainz, Germany 87 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom 88 CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France 90 Department of Physics, McGill University, Montreal QC, Canada 91 School of Physics, University of Melbourne, Victoria, Australia 92 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America 93 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States 94 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Universita di Milano, Milano, Italy 95 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of 96 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Republic of 97 Group of Particle Physics, University of Montreal, Montreal QC, Canada 98 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia 99 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia 100 National Research Nuclear University MEPhI, Moscow, Russia 101 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, 102 Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Munchen, Germany 103 Max-Planck-Institut fur Physik (Werner-Heisenberg-Institut), Munchen, Germany 104 Nagasaki Institute of Applied Science, Nagasaki, Japan 105 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan 106 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Universita di Napoli, Napoli, Italy 107 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States Nijmegen/Nikhef, Nijmegen, Netherlands 108 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University 109 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, 110 Department of Physics, Northern Illinois University, DeKalb IL, United States of America 111 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia 112 Department of Physics, New York University, New York NY, United States of America 113 Ohio State University, Columbus OH, United States of America 114 Faculty of Science, Okayama University, Okayama, Japan 115 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America 116 Department of Physics, Oklahoma State University, Stillwater OK, United States of America 117 Palacky University, RCPTM, Olomouc, Czech Republic 118 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America 119 LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France 120 Graduate School of Science, Osaka University, Osaka, Japan 121 Department of Physics, University of Oslo, Oslo, Norway 122 Department of Physics, Oxford University, Oxford, United Kingdom 123 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Universita di Pavia, Pavia, Italy 124 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America 125 National Research Centre \Kurchatov Institute" B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia 126 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Universita di Pisa, Pisa, Italy 127 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of 128 (a) Laboratorio de Instrumentaca~o e F sica Experimental de Part culas - LIP, Lisboa; (b) Faculdade de Ci^encias, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de F sica Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Vergata, Roma, Italy Roma, Italy 136 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Universita Roma Tre, Fisica, Universidade do Minho, Braga; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada; (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal 129 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic 130 Czech Technical University in Prague, Praha, Czech Republic 131 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 132 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia 133 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom 134 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Universita di Roma, Roma, Italy 135 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Universita di Roma Tor 137 (a) Faculte des Sciences Ain Chock, Reseau Universitaire de Physique des Hautes Energies Universite Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculte des Sciences Semlalia, Universite Cadi Ayyad, LPHEA-Marrakech; (d) Faculte des Sciences, Universite Mohamed Premier and LPTPM, Oujda; (e) Faculte des sciences, Universite Mohammed V, Rabat, Morocco 138 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France 139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America 140 Department of Physics, University of Washington, Seattle WA, United States of America 141 Department of Physics and Astronomy, University of She eld, She eld, United Kingdom 142 Department of Physics, Shinshu University, Nagano, Japan 143 Department Physik, Universitat Siegen, Siegen, Germany 144 Department of Physics, Simon Fraser University, Burnaby BC, Canada 145 SLAC National Accelerator Laboratory, Stanford CA, United States of America 146 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic 147 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa United States of America 148 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden 149 Physics Department, Royal Institute of Technology, Stockholm, Sweden 150 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, Israel of Tokyo, Tokyo, Japan 151 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom 152 School of Physics, University of Sydney, Sydney, Australia 153 Institute of Physics, Academia Sinica, Taipei, Taiwan 154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel 155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece 157 International Center for Elementary Particle Physics and Department of Physics, The University 158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan 159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan 160 Tomsk State University, Tomsk, Russia 161 Department of Physics, University of Toronto, Toronto ON, Canada 162 (a) INFN-TIFPA; (b) University of Trento, Trento, Italy ON, Canada 164 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan 165 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America 166 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of 167 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Universita di Udine, Udine, Italy 168 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden 169 Department of Physics, University of Illinois, Urbana IL, United States of America 171 Department of Physics, University of British Columbia, Vancouver BC, Canada 172 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada 173 Department of Physics, University of Warwick, Coventry, United Kingdom 174 Waseda University, Tokyo, Japan 175 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel 176 Department of Physics, University of Wisconsin, Madison WI, United States of America 177 Fakultat fur Physik und Astronomie, Julius-Maximilians-Universitat, Wurzburg, Germany 178 Fakultat fur Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universitat Wuppertal, Wuppertal, Germany 179 Department of Physics, Yale University, New Haven CT, United States of America 180 Yerevan Physics Institute, Yerevan, Armenia 181 Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 182 Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan a Also at Department of Physics, King's College London, London, United Kingdom b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan c Also at Novosibirsk State University, Novosibirsk, Russia d Also at TRIUMF, Vancouver BC, Canada e Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America f Also at Physics Department, An-Najah National University, Nablus, Palestine g Also at Department of Physics, California State University, Fresno CA, United States of America h Also at Department of Physics, University of Fribourg, Fribourg, Switzerland i Also at II Physikalisches Institut, Georg-August-Universitat, Gottingen, Germany j Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain k Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal l Also at Tomsk State University, Tomsk, Russia n Also at Universita di Napoli Parthenope, Napoli, Italy o Also at Institute of Particle Physics (IPP), Canada m Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China United States of America Greece Africa p Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania q Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia r Also at Borough of Manhattan Community College, City University of New York, New York City, s Also at Department of Financial and Management Engineering, University of the Aegean, Chios, t Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South u Also at Louisiana Tech University, Ruston LA, United States of America Also at Graduate School of Science, Osaka University, Osaka, Japan x Also at Fakultat fur Mathematik und Physik, Albert-Ludwigs-Universitat, Freiburg, Germany y Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University z Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of aa Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia ab Also at CERN, Geneva, Switzerland ac Also at Georgian Technical University (GTU),Tbilisi, Georgia ad Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan ae Also at Manhattan College, New York NY, United States of America af Also at Departamento de F sica, Ponti cia Universidad Catolica de Chile, Santiago, Chile ag Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America Switzerland ai Also at School of Physics, Shandong University, Shandong, China aj Also at Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, ak Also at Department of Physics, California State University, Sacramento CA, United States of al Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia Also at Departement de Physique Nucleaire et Corpusculaire, Universite de Geneve, Geneva, an Also at Institut de F sica d'Altes Energies (IFAE), The Barcelona Institute of Science and Sciences, So a, Bulgaria ap Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of aq Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia ar Also at National Research Nuclear University MEPhI, Moscow, Russia as Also at Department of Physics, Stanford University, Stanford CA, United States of America at Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, av Also at CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France az Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France [1] D. London and J.L. Rosner , Extra Gauge Bosons in E6, Phys. Rev. D 34 ( 1986 ) 1530 [2] P. Langacker , The Physics of Heavy Z0 Gauge Bosons, Rev. Mod. Phys . 81 ( 2009 ) 1199 Phys . Rev. Lett . 50 ( 1983 ) 811 [INSPIRE]. [18] E. Eichten , I. Hinchli e, K.D. Lane and C. Quigg , Super Collider Physics, Rev. Mod. Phys. [19] N. Arkani-Hamed , S. Dimopoulos and G.R. Dvali , Phenomenology, astrophysics and [22] ATLAS collaboration, Performance of the ATLAS Trigger System in 2015, Eur . Phys. J. C [23] S. Alioli , P. Nason , C. Oleari and E. Re , A general framework for implementing NLO [35] M. Czakon and A. Mitov , Top++ : A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput . Phys. Commun . 185 ( 2014 ) 2930 [36] R.D. Ball et al., Parton distributions with LHC data, Nucl . Phys. B 867 ( 2013 ) 244 [37] ATLAS collaboration, ATLAS Run 1 PYTHIA8 tunes, ATL- PHYS-PUB- 2014- 021 ( 2014 ). [38] GEANT4 collaboration , S. Agostinelli et al., GEANT4: A Simulation toolkit , Nucl. [39] ATLAS collaboration , The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70 ( 2010 ) [40] A.D. Martin , W.J. Stirling , R.S. Thorne and G. Watt , Parton distributions for the LHC , Eur. Phys. J. C 63 ( 2009 ) 189 [arXiv: 0901 .0002] [INSPIRE]. [53] A. Caldwell , D. Kollar and K. Kroninger , BAT: The Bayesian Analysis Toolkit, Comput. Phys. Commun . 180 ( 2009 ) 2197 [arXiv: 0808 .2552] [INSPIRE]. [54] G. Choudalakis , On hypothesis testing, trials factor, hypertests and the BumpHunter , [55] G. Cowan , K. Cranmer , E. Gross and O. Vitells , Asymptotic formulae for likelihood-based tests of new physics , Eur. Phys. J. C 71 ( 2011 ) 1554 [Erratum ibid . C 73 ( 2013 ) 2501] [56] ROOT collaboration, K . Cranmer, G. Lewis , L. Moneta , A. Shibata and W. Verkerke , [57] L. Moneta et al., The RooStats Project , PoS(ACAT2010)057 [arXiv:1009 .1003] [INSPIRE]. [58] W. Verkerke and D.P. Kirkby , The RooFit toolkit for data modeling, eConf C 0303241 B .E. Cox87, K. Cranmer112, S.J. Crawley56 , R.A. Creager124 , G. Cree31, S. Crepe-Renaudin58 , F. Crescioli83 , W.A. Cribbs148a ,148b, M. Cristinziani23 , V. Croft108, G. Crosetti40a,40b, A . Cueto85, T. Cuhadar Donszelmann141 , A.R. Cukierman145 , J. Cummings179 , M. Curatolo50 , J. Cuth86 , S. Czekierda42, P. Czodrowski32, G. D'amen22a,22b, S. D'Auria56 , L. D' eramo83, M. D'Onofrio77 , M.J. Da Cunha Sargedas De Sousa128a,128b, C. Da Via87 , W. Dabrowski41a, T. Dado146a, T. Dai92, O. Dale15 , F. Dallaire97 , C. Dallapiccola89, M. Dam39 , J.R. Dandoy124 , M.F. Daneri29 , N.P. Dang176 , A.C. Daniells19 , N.S. Dann87 , M. Danninger171 , M. Dano Ho mann138, V. Dao150 , G. Darbo53a, S. Darmora8 , J. Dassoulas3 , A. Dattagupta118, T. Daubney45, W. Davey23, C. David45, T. Davidek131, D.R. Davis48 , P. Davison81, E. Dawe91, I. Dawson141, K. De8 , R. de Asmundis106a, A. De Benedetti115 , S. De Castro22a,22b, S. De Cecco83, N. De Groot108, P. de Jong109, H. De la Torre93 , F. De Lorenzi67 , A. De Maria57 ,

This is a preview of a remote PDF:

The ATLAS collaboration, M. Aaboud, G. Aad, B. Abbott, O. Abdinov, B. Abeloos, S. H. Abidi, O. S. AbouZeid, N. L. Abraham, H. Abramowicz, H. Abreu, R. Abreu, Y. Abulaiti, B. S. Acharya, S. Adachi, L. Adamczyk, J. Adelman, M. Adersberger, T. Adye, A. A. Affolder, T. Agatonovic-Jovin, C. Agheorghiesei, J. A. Aguilar-Saavedra, S. P. Ahlen, F. Ahmadov, G. Aielli, S. Akatsuka, H. Akerstedt, T. P. A. Åkesson, E. Akilli, A. V. Akimov, G. L. Alberghi, J. Albert, P. Albicocco, M. J. Alconada Verzini, S. C. Alderweireldt, M. Aleksa, I. N. Aleksandrov, C. Alexa, G. Alexander, T. Alexopoulos, M. Alhroob, B. Ali, M. Aliev, G. Alimonti, J. Alison, S. P. Alkire, B. M. M. Allbrooke, B. W. Allen, P. P. Allport, A. Aloisio, A. Alonso, F. Alonso, C. Alpigiani, A. A. Alshehri, M. I. Alstaty, B. Alvarez Gonzalez, D. Álvarez Piqueras, M. G. Alviggi, B. T. Amadio, Y. Amaral Coutinho, C. Amelung, D. Amidei, S. P. Amor Dos Santos, A. Amorim, S. Amoroso, G. Amundsen, C. Anastopoulos, L. S. Ancu, N. Andari, T. Andeen, C. F. Anders, J. K. Anders, K. J. Anderson, A. Andreazza, V. Andrei, S. Angelidakis, I. Angelozzi, A. Angerami, A. V. Anisenkov, N. Anjos, A. Annovi, C. Antel, M. Antonelli, A. Antonov, D. J. Antrim, F. Anulli, M. Aoki, L. Aperio Bella, G. Arabidze, Y. Arai, J. P. Araque, V. Araujo Ferraz, A. T. H. Arce, R. E. Ardell, F. A. Arduh, J-F. Arguin, S. Argyropoulos, M. Arik, A. J. Armbruster, L. J. Armitage, O. Arnaez, H. Arnold, M. Arratia, O. Arslan, A. Artamonov, G. Artoni, S. Artz, S. Asai, N. Asbah, A. Ashkenazi, L. Asquith, K. Assamagan, R. Astalos, M. Atkinson, N. B. Atlay, K. Augsten, G. Avolio, B. Axen, M. K. Ayoub, G. Azuelos, A. E. Baas, M. J. Baca, H. Bachacou, K. Bachas, M. Backes, M. Backhaus, P. Bagnaia, M. Bahmani, H. Bahrasemani, J. T. Baines, M. Bajic, O. K. Baker, E. M. Baldin, P. Balek, F. Balli, W. K. Balunas, E. Banas, A. Bandyopadhyay, Sw. Banerjee, A. A. E. Bannoura, L. Barak, E. L. Barberio, D. Barberis, M. Barbero, T. Barillari, M-S Barisits, J. T. Barkeloo, T. Barklow, N. Barlow, S. L. Barnes, B. M. Barnett, R. M. Barnett, Z. Barnovska-Blenessy, A. Baroncelli, G. Barone, A. J. Barr, L. Barranco Navarro, F. Barreiro, J. Barreiro Guimarães da Costa, R. Bartoldus, A. E. Barton, P. Bartos, A. Basalaev, A. Bassalat, R. L. Bates, S. J. Batista, J. R. Batley, M. Battaglia, M. Bauce, F. Bauer, H. S. Bawa, J. B. Beacham, M. D. Beattie, T. Beau, P. H. Beauchemin, P. Bechtle, H. P. Beck, H. C. Beck, K. Becker, M. Becker, M. Beckingham, C. Becot, A. J. Beddall, A. Beddall, V. A. Bednyakov, M. Bedognetti, C. P. Bee, T. A. Beermann, M. Begalli, M. Begel, J. K. Behr, A. S. Bell, G. Bella, L. Bellagamba, A. Bellerive, M. Bellomo, K. Belotskiy, O. Beltramello, N. L. Belyaev, O. Benary, D. Benchekroun, M. Bender, K. Bendtz, N. Benekos, Y. Benhammou, E. Benhar Noccioli, J. Benitez, D. P. Benjamin, M. Benoit, J. R. Bensinger, S. Bentvelsen, L. Beresford, M. Beretta, D. Berge, E. Bergeaas Kuutmann, N. Berger, J. Beringer, S. Berlendis, N. R. Bernard, G. Bernardi, C. Bernius, F. U. Bernlochner, T. Berry, P. Berta, C. Bertella, G. Bertoli, F. Bertolucci, I. A. Bertram, C. Bertsche, D. Bertsche, G. J. Besjes, O. Bessidskaia Bylund, M. Bessner, N. Besson, C. Betancourt, A. Bethani, S. Bethke, A. J. Bevan, J. Beyer, R. M. Bianchi, O. Biebel, D. Biedermann, R. Bielski, K. Bierwagen, N. V. Biesuz, M. Biglietti, T. R. V. Billoud, H. Bilokon, M. Bindi, A. Bingul, C. Bini, S. Biondi, T. Bisanz, C. Bittrich, D. M. Bjergaard, C. W. Black, J. E. Black, K. M. Black, R. E. Blair, T. Blazek, I. Bloch, C. Blocker, A. Blue, W. Blum, U. Blumenschein, S. Blunier, G. J. Bobbink, V. S. Bobrovnikov, S. S. Bocchetta, A. Bocci, C. Bock, M. Boehler, D. Boerner, D. Bogavac, A. G. Bogdanchikov, C. Bohm, V. Boisvert, P. Bokan, T. Bold, A. S. Boldyrev, A. E. Bolz, M. Bomben, M. Bona, M. Boonekamp, A. Borisov, G. Borissov, J. Bortfeldt, D. Bortoletto, V. Bortolotto, D. Boscherini, M. Bosman, J. D. Bossio Sola, J. Boudreau, J. Bouffard, E. V. Bouhova-Thacker, D. Boumediene, C. Bourdarios, S. K. Boutle, A. Boveia, J. Boyd, I. R. Boyko, J. Bracinik, A. Brandt, G. Brandt, O. Brandt, U. Bratzler, B. Brau, J. E. Brau, W. D. Breaden Madden, K. Brendlinger, A. J. Brennan, L. Brenner, R. Brenner, S. Bressler, D. L. Briglin, T. M. Bristow, D. Britton, D. Britzger, F. M. Brochu, I. Brock, R. Brock, G. Brooijmans, T. Brooks, W. K. Brooks, J. Brosamer, E. Brost, J. H Broughton, P. A. Bruckman de Renstrom, D. Bruncko, A. Bruni, G. Bruni, L. S. Bruni, BH Brunt, M. Bruschi, N. Bruscino, P. Bryant, L. Bryngemark, T. Buanes, Q. Buat, P. Buchholz, A. G. Buckley, I. A. Budagov, F. Buehrer, M. K. Bugge, O. Bulekov, D. Bullock, T. J. Burch, S. Burdin, C. D. Burgard, A. M. Burger, B. Burghgrave, K. Burka, S. Burke, I. Burmeister, J. T. P. Burr, E. Busato, D. Büscher, V. Büscher, P. Bussey, J. M. Butler, C. M. Buttar, J. M. Butterworth, P. Butti, W. Buttinger, A. Buzatu, A. R. Buzykaev, S. Cabrera Urbán, D. Caforio, V. M. Cairo, O. Cakir, N. Calace, P. Calafiura. Search for new high-mass phenomena in the dilepton final state using 36 fb−1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Journal of High Energy Physics, 2017, 182, DOI: 10.1007/JHEP10(2017)182