Search for supersymmetry in events with b-tagged jets and missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector

Journal of High Energy Physics, Nov 2017

Abstract A search for the supersymmetric partners of the Standard Model bottom and top quarks is presented. The search uses 36.1 fb−1 of pp collision data at \( \sqrt{s}=13 \) TeV collected by the ATLAS experiment at the Large Hadron Collider. Direct production of pairs of bottom and top squarks (\( {\overline{b}}_1 \) and \( {\overline{t}}_1 \)) is searched for in final states with b-tagged jets and missing transverse momentum. Distinctive selections are defined with either no charged leptons (electrons or muons) in the final state, or one charged lepton. The zero-lepton selection targets models in which the \( {\overline{b}}_1 \) is the lightest squark and decays via \( {\overline{b}}_1\to b{\overline{\chi}}_1^0 \), where \( {\overline{\chi}}_1^0 \) is the lightest neutralino. The one-lepton final state targets models where bottom or top squarks are produced and can decay into multiple channels, \( {\overline{b}}_1\to b{\overline{\chi}}_1^0 \) and \( {\overline{b}}_1\to t{\overline{\chi}}_1^{\pm } \), or \( {\overline{t}}_1\to t{\overline{\chi}}_1^0 \) and \( {\overline{t}}_1\to b{\overline{\chi}}_1^{\pm } \), where \( {\overline{\chi}}_1^{\pm } \) is the lightest chargino and the mass difference \( {m}_{{\overline{\chi}}_1^{\pm }}-{m}_{{\overline{\chi}}_1^0} \) is set to 1 GeV. No excess above the expected Standard Model background is observed. Exclusion limits at 95% confidence level on the mass of third-generation squarks are derived in various supersymmetry-inspired simplified models. Open image in new window

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

Search for supersymmetry in events with b-tagged jets and missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector

HJE s = 13 TeV with the ATLAS detector and p Search for supersymmetry in events with b-tagged jets missing transverse momentum in pp collisions at A search for the supersymmetric partners of the Standard Model bottom and m 01 is set to 1 GeV. No excess above the expected Standard Model background is are derived in various supersymmetry-inspired simpli ed models. Hadron-Hadron scattering (experiments) - s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider. Direct production of pairs of bottom and top squarks (b1 and t1) is searched for in nal states with b-tagged jets and missing transverse momentum. Distinctive selections are de ned with either no charged leptons (electrons or muons) in the nal state, or one charged lepton. The zero-lepton selection targets models in which the b1 is the lightest squark and decays via b1 ! b 01, where 01 is the lightest neutralino. The one-lepton nal state targets models where bottom or top squarks are produced and can decay into multiple channels, b1 ! b 01 and b1 ! t 1 , or t1 ! t 01 and t1 ! b 1 , where 1 is the lightest chargino and the mass di erence m observed. Exclusion limits at 95% con dence level on the mass of third-generation squarks 1 Introduction Data and simulated event samples Event reconstruction Event selection Discriminating variables Zero-lepton channel selections One-lepton channel selections 6 Background estimation 2 3 4 5 7 8 9 5.1 5.2 5.3 6.1 6.2 6.3 Background estimation in the zero-lepton signal regions Background estimation in the one-lepton signal regions Validation regions Systematic uncertainties Results and interpretation Conclusion The ATLAS collaboration 1 Introduction Supersymmetry (SUSY) [1{6] provides an extension of the Standard Model (SM) that solves the hierarchy problem [7{10] by introducing partners of the known bosons and fermions. In the framework of R-parity-conserving models, SUSY particles are produced in pairs and the lightest supersymmetric particle (LSP) is stable, providing a possible candidate for dark matter [11, 12]. In a large variety of models the LSP is the lightest neutralino ( ~01). Naturalness considerations [13, 14] suggest that the supersymmetric partners of the thirdgeneration SM quarks are the lightest coloured supersymmetric particles. This may lead to the lightest bottom squark (~b1) and top squark (t~1) mass eigenstates1 being signi cantly lighter than the other squarks and the gluinos. As a consequence, ~b1 and t~1 could be pair-produced with relatively large cross-sections at the Large Hadron Collider (LHC). 1Scalar partners of the left-handed and right-handed chiral components of the bottom quark (~bL;R) or top quark (t~L;R) mix to form mass eigenstates for which ~b1 and t~1are de ned as the lighter of the two. { 1 { This paper presents a search for the direct pair production of bottom and top squarks data at p decaying into nal states with jets, two of them originating from the fragmentation of bquarks (b-jets), and missing transverse momentum (pTmiss, whose magnitude is referred to as ETmiss). The dataset analysed corresponds to 36.1 fb 1 of proton-proton (pp) collisions s = 13 TeV collected by the ATLAS experiment during Run 2 of the LHC in 2015 and 2016. The third-generation squarks are assumed to decay to the lightest neutralino (LSP) directly or through one intermediate stage. The search is based on simpli ed models inspired by the minimal supersymmetric extension of the SM (MSSM) [15{17], where the ~b1 exclusively decays as ~b1 ! b ~01 or where two decay modes for the bottom (top) squark are allowed and direct decays to the LSP, ~b1 ! b ~01 (t~1 ! t ~01) compete with decays via an intermediate chargino ( ~1 ) state, ~b1 ! t ~1 (t~1 ! b ~1 ). In this case it is assumed that the ~ 1 is the next-to-lightest supersymmetric particle (NLSP) and is almost degenerate with ~01, such that other decay products are too low in momentum to be e ciently reconstructed. The rst set of models lead to nal-state events from bottom squark pair production characterized by the presence of two b-jets, ETmiss and no charged leptons (` = e; ), referred to as the zero-lepton channel ( gure 1a). For mixed decays models (intended as models where both direct decays and decays through an intermediate stage are kinematically allowed), the nal state of bottom or top squark pair production depends on the branching ratios of the competing decay modes. If the decay modes are equally probable, a large fraction of the signal events are characterized by the presence of a top quark, a bottom quark, and neutralinos. Hadronic decays of the top quark are targeted by the zero-lepton channel, whilst novel dedicated selections requiring one charged lepton, two b-jets and ETmiss are developed for semi-leptonic decays of the top quark, referred to as the one-lepton channel ( gure 1b). A statistical combination of the two channels is performed when interpreting the results in terms of exclusion limits on the third-generation squark masses. Previous searches for the exclusive decay ~b1 ! b ~01 with the p s = 13 TeV LHC Run-2 performed only by ATLAS using the Run-1 p dataset at ATLAS and CMS have set exclusion limits at 95% con dence level (CL) on ~b1 masses in such scenarios [18, 19]. Searches in the context of mixed-decay models were s = 8 TeV dataset and resulted in exclusion limits on the third-generation squark mass that depend on the branching ratios of the competing decay modes [20]. 2 ATLAS detector The ATLAS detector [21] is a multi-purpose particle physics detector with a forwardbackward symmetric cylindrical geometry and nearly 4 coverage in solid angle.2 The 2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector. The positive x-axis is de ned by the direction from the interaction point to the centre of the LHC ring, with the positive y-axis pointing upwards, while the beam direction de nes the z-axis. Cylindrical coordinates (r; ) are used in the transverse plane, being the azimuthal angle around the z-axis. The pseudorapidity is de ned in terms of the polar angle by = ln tan( =2). Rapidity is de ned as y = 0:5 ln[(E + pz)=(E pz)] where E denotes the energy and pz is the component of the momentum along the beam direction. { 2 { duction of bottom and top squarks targeted by the (a) zero-lepton and (b) one-lepton channel selections. In (a) bottom squarks decay to a bottom quark and the lightest neutralino. In (b), decays via intermediate charginos are kinematically available and compete. If the mass di erence m( ~1 ; ~01) is small, the W bosons from chargino decays are o -shell. inner tracking detector consists of pixel and silicon microstrip detectors covering the pseudorapidity region j j < 2:5, surrounded by a transition radiation tracker which enhances electron identi cation in the region j j < 2:0. Between Run 1 and Run 2, a new inner pixel layer, the insertable B-layer [22], was added at a mean sensor radius of 3.3 cm. The inner detector is surrounded by a thin superconducting solenoid providing an axial 2 T magnetic eld and by a ne-granularity lead/liquid-argon (LAr) electromagnetic calorimeter covering j j < 3:2. A steel/scintillator-tile calorimeter provides hadronic coverage in the central pseudorapidity range (j j < 1:7). The endcap and forward regions (1:5 < j j < 4:9) of the hadronic calorimeter are made of LAr active layers with either copper or tungsten as the absorber material. An extensive muon spectrometer with an air-core toroidal magnet system surrounds the calorimeters. Three layers of high-precision tracking chambers provide coverage in the range j j < 2:7, while dedicated fast chambers allow triggering in the region j j < 2:4. The ATLAS trigger system consists of a hardware-based level-1 trigger followed by a software-based high-level trigger [23]. 3 Data and simulated event samples The data used in this analysis were collected by the ATLAS detector in pp collisions at the LHC with a centre-of-mass energy of 13 TeV and a 25 ns proton bunch crossing interval during 2015 and 2016. The full dataset corresponds to an integrated luminosity of 36.1 fb 1 after requiring that all detector subsystems were operational during data recording. The uncertainty in the combined 2015+2016 integrated luminosity is 3.2%. It is derived following a methodology similar to that detailed in ref. [24] from a preliminary calibration of the luminosity scale using x{y beam-separation scans performed in August 2015 and May 2016. Each event includes on average 13.7 and 24.9 inelastic pp collisions (\pile-up") in the same bunch crossing in the 2015 and 2016 dataset, respectively. In the zero-lepton channel, events are required to pass an ETmiss trigger [25]. This trigger is { 3 { fully e cient for events passing the preselection de ned in section 5, which requires the o ine reconstructed ETmiss to exceed 200 GeV. Events in the one-lepton channel, as well as events used for control regions, are selected online by a trigger requiring the presence of one electron or muon. The online selection thresholds are such that a plateau of the e ciency is reached for charged-lepton transverse momenta of 27 GeV and above. Monte Carlo (MC) samples of simulated events are used to model the signal and to aid in the estimation of SM background processes, except multijet processes, which are estimated from data only. All simulated samples were produced using the ATLAS simulation infrastructure [26] using GEANT4 [27], or a faster simulation [28] based on a parameterization of the calorimeter response and GEANT4 for the other detector systems. The simulated events are reconstructed with the same algorithm as that used for data. SUSY signal samples were generated with MadGraph5 aMC@NLO [29] v2.2.3 at leading order (LO) and interfaced to Pythia v8.186 [30] with the A14 [31] set of tuned parameters (tune) for the modelling of the parton showering (PS), hadronization and underlying event. The matrix element (ME) calculation was performed at tree level and includes the emission of up to two additional partons. The ME-PS matching was done using the CKKW-L [32] prescription, with a matching scale set to one quarter of the thirdgeneration squark mass. The NNPDF23LO [33] parton distribution function (PDF) set was used. The cross-sections used to evaluate the signal yields are calculated to next-toleading-order (NLO) accuracy in the strong coupling constant, adding the resummation of soft gluon emission at next-to-leading-logarithmic accuracy (NLO+NLL) [34{36]. The nominal cross-section and uncertainty are taken as the midpoint and half-width of an envelope of cross-section predictions using di erent PDF sets and factorization and renormalization scales, as described in ref. [37]. SM background samples were simulated using di erent MC event generator programs depending on the process. The generation of tt was performed by the Powheg-Box [38] v2 generator with the CT10 [39] PDF set for the matrix element calculations. Singletop-quark events in the W t, s-, and t channels were generated using the PowhegBox v1 generator. For all processes involving top quarks, top quark spin correlations were preserved. The parton shower, fragmentation and the underlying event were simulated using Pythia v6.428 [40] with the CTEQ6L1 PDF set and the Perugia 2012 [41] tune for the underlying event. The hdamp parameter in Powheg, which controls the pT of the rst additional emission beyond the Born level and thus regulates the pT of the recoil emission against the tt system, was set to the mass of the top quark (mt = 172:5 GeV). All events with at least one leptonically decaying W boson are retained. Fully hadronic tt and singletop events do not contain su cient ETmiss to contribute signi cantly to the background. The tt samples are normalized using their next-to-NLO (NNLO) cross-section including the resummation of soft gluon emission at next-to-NLL accuracy using Top++2.0 [42]. Samples of single-top-quark events are normalized using the NLO cross-sections reported in refs. [43{45] for the s-, t- and W t-channels, respectively. Events containing W or Z bosons with associated jets, including jets from the fragmentation of b- and c-quarks, were simulated using the Sherpa v2.2.1 [46] generator. { 4 { Matrix elements were calculated for up to two additional partons at NLO and four partons at LO using the Comix [47] and OpenLoops [48] matrix element event generators and merged with the Sherpa PS [49] using the ME+PS@NLO prescription [50]. The NNPDF30NNLO [33] PDF set was used in conjunction with a dedicated PS tune developed by the Sherpa authors. Additional Sherpa Z+jets samples were produced with similar settings but with up to four partons LO, for the +jets studies detailed in section 6. The W /Z+jets events are normalized using their NNLO QCD theoretical cross-sections [51]. Diboson processes were also simulated using the Sherpa generator using the NNPDF30NNLO PDF set in conjunction with a dedicated PS tune developed by the Sherpa authors. They were calculated for up to one (ZZ) or zero (W W; W Z) addior four top quarks or three gauge bosons, are found to be negligible. For all samples, except the ones generated using Sherpa, the EvtGen v1.2.0 program [52] was used to simulate the properties of the bottom- and charm-hadron decays. In-time and out-of-time pile-up interactions from the same or nearby bunch-crossings were simulated by overlaying additional pp collisions generated by Pythia v8.186, with the MSTW2008LO [53] PDF set, superimposed onto the hard-scattering events to reproduce the observed distribution of the average number of interactions per bunch crossing [54]. Several samples produced without detector simulation are employed to estimate systematic uncertainties associated with the speci c con guration of the MC event generators used for the nominal SM background samples. They include variations of the renormalization and factorization scales, the CKKW-L matching scale, as well as di erent PDF sets and fragmentation/hadronization models. Details of the MC modelling uncertainties are discussed in section 7. 4 Event reconstruction The search for pair production of bottom and top squarks is based on two distinct selections of events with b-jets and large missing transverse momentum, with either no charged leptons in the nal state, or requiring exactly one electron or muon (for details, see section 5). For the zero-lepton channel selection, events containing charged leptons are explicitly vetoed in the signal and validation regions. Events characterized by the presence of exactly one electron or muon with transverse momentum above 27 GeV are retained in the one-lepton selection and are also used to de ne control regions for the zero-lepton channel. Finally, same- avour opposite-sign (SFOS) two-lepton (electron or muon) events with dilepton invariant mass near the Z boson mass are used for control regions employed to aid in the estimation of the Z+jets background for the zero-lepton channel. The details of the reconstruction and selection, as well as the overlap removal procedure are given below. { 5 { Selected events are required to have a reconstructed primary vertex consistent with the beamspot envelope and to consist of at least two tracks in the inner detector with pT > 0.4 GeV. When more than one such vertex is found, the one with the largest sum of the squares of transverse momenta of associated tracks [55] is chosen. Jet candidates are reconstructed from three-dimensional energy clusters [56] in the calorimeter using the anti-kt jet algorithm [57, 58] with a radius parameter of 0.4. The reconstructed jets are then calibrated to the particle level by the application of a jet energy scale (JES) derived from p s = 13 TeV data and simulation [59]. Quality criteria are imposed to identify jets arising from non-collision sources or detector noise, and any event containing such a jet is removed [60]. Further track-based selections are applied to reject jets with pT < 60 GeV and j j < 2:4 that originate from pile-up interactions [61], and the jet momentum is corrected by subtracting the expected average energy contribution from pile-up using the jet area method [62]. Jets are classi ed as \baseline" and \signal". Baseline jets are required to have pT > 20 GeV and j j < 4:8. Signal jets, selected after resolving overlaps with electrons and muons, are required to pass the stricter requirement of pT > 35 GeV and j j < 2:8. Jets are identi ed as b-jets if tagged by a multivariate algorithm which uses information about the impact parameters of inner detector tracks matched to the jet, the presence of displaced secondary vertices, and the reconstructed ight paths of b- and c-hadrons inside the jet [63]. The b-tagging working point with a 77% e ciency, as determined in a sample of simulated tt events, was chosen as part of the optimization procedure. The corresponding rejection factors against jets originating from c-quarks and from light quarks and gluons at this working point are 6.2 and 134, respectively [64]. To compensate for di erences between data and MC simulation in the b-tagging e ciencies and mis-tag rates, correction factors are derived from data and applied to the samples of simulated events [63]. Candidate b-jets are required to have pT > 20 GeV and j j < 2.5. Electron candidates are reconstructed from energy clusters in the electromagnetic calorimeter matched to a track in the inner detector and are required to satisfy a set of \loose" quality criteria [65{67]. They are also required to lie within the ducial volume j j < 2:47. Muon candidates are reconstructed by matching tracks in the inner detector with tracks in the muon spectrometer. Events containing one or more muon candidates that have a transverse (longitudinal) impact parameter with respect to the primary vertex larger than 0.2 mm (1 mm) are rejected to suppress muons from cosmic rays. Muon candidates are also required to satisfy \medium" quality criteria [68] and have j j < 2.5. All electron and muon candidates must have pT > 10 GeV. Lepton candidates remaining after resolving overlaps with baseline jets (see next paragraph) are called \baseline" leptons. In the control and signal regions where lepton identi cation is required, \signal" leptons are chosen from the baseline set with pT > 27 GeV to ensure full e ciency of the trigger and are required to be isolated from other activity in the detector using a criterion designed to accept at least 95% of leptons from Z boson decays as detailed in ref. [69]. The angular separation between the lepton and the b-jet arising from a semi-leptonically decaying top quark narrows as the top quark's pT increases. This increased collimation is accounted for by varying the radius of the isolation cone as max(0.2, 10 GeV/plTep), where plTep is the { 6 { lepton pT. Signal electrons are further required to satisfy \tight" quality criteria. Electrons (muons) are matched to the primary vertex by requiring the transverse impact parameter (d0) to satisfy jd0j= (d0) < 5 (3), and the longitudinal impact parameter (z0) to satisfy jz0 sin j < 0.5 mm for both the electrons and muons. The MC events are corrected to account for di erences in the lepton trigger, reconstruction and identi cation e ciencies between data and MC simulation. The sequence to resolve overlapping electrons, muons and jets begins by removing electron candidates sharing an inner detector track with a muon candidate. Next, jet candidates within R = p( y)2 + ( )2 = 0:2 of an electron candidate are discarded, unless the jet is b-tagged, in which case the electron is discarded since it is likely to originate from a semileptonic b-hadron decay. Electrons are discarded if they lie within of a jet. Muons with pT below (above) 50 GeV are discarded if they lie within R = 0:4 R = 0:4 ( R = 0:04 + 10 GeV=pT) of any remaining jet, except for the case where the number of tracks associated with the jet is less than three. The missing transverse momentum is de ned as the negative vector sum of the pT of all selected and calibrated physics objects (electrons, muons and jets) in the event, with an extra term added to account for soft energy in the event which is not associated with any of the selected objects. This soft term is calculated from inner detector tracks with pT above 0.4 GeV matched to the primary vertex to make it more robust against pile-up contamination [70, 71]. Reconstructed photons are not used in the main signal event selections but are selected in the regions employed in one of the alternative methods used to estimate the Z+jets background, as explained in section 6. Photon candidates are required to have pT > 145 GeV and j j < 2:37, whilst being outside the transition region 1:37 < j j < 1:52, to satisfy the tight photon shower shape and electron rejection criteria [72], and to be isolated. 5 Event selection Two sets of signal regions (SRs) are de ned and optimized to target di erent thirdgeneration squark decay modes and mass hierarchies of the particles involved. The zerolepton channel SRs (b0L) are designed to maximize the e ciency to retain bottom-squark pair production events where ~b1 ! b ~01. The one-lepton channel selections (b1L) target SUSY models where bottom squarks decay with a signi cant branching ratio as ~b1 ! t ~1 and the lightest chargino is almost degenerate with the lightest neutralino. With these assumptions, the nal decay products of the o -shell W boson from ~ to be detected. If the branching ratios of the two competing decay modes (b ~01; t ~1 ) are around 50%, the nal state for the largest fraction of signal events is characterized by the presence of a top quark, a bottom quark, and neutralinos escaping the detector. Similarly, t~1 pair production can lead to an equivalent nal state if the t~1 ! t ~01 and t~1 ! b ~1 decay 1 ! ~01W are too soft modes compete. 5.1 Discriminating variables Several kinematic variables and angular correlations, built from the physics objects de ned in the previous section, are employed to discriminate SUSY from SM background events { 7 { and are reported below. In the following, signal jets are used and are ordered according to decreasing pT. jmin, min[ (jet1 4; ETmiss)], min[ (jet1 2; ETmiss)]: these variables are the minimum between any of the leading jets and the missing transverse momentum vector. The background from multijet processes is characterized by small values of this variable. Depending on the signal regions, all, four or two jets are used. HT: this is de ned as the scalar sum of the pT of all jets in the event HT = X(pjTet)i; i where the number of jets involved depends on the signal region. In addition, the modi ed form of HT, referred to as the HT4 variable, is used to reject events with extra-jet activity in signal regions targeting models characterized by small masssplitting between the bottom squark and the neutralino. In HT4 the sum starts with the fourth jet (if any). me : this is de ned as the scalar sum of the pT of the jets and the ETmiss, i.e.: me = X(pjTet)i + ETmiss: The me observable is correlated with the mass of the pair-produced SUSY particles and is employed as a discriminating variable in some of the zero-lepton and one-lepton channel selections, as well as in the computation of other composite observables. ETmiss=me , ETmiss=pHT: the rst ratio is the ETmiss divided by the me , while the second emulates the global ETmiss signi cance, given that the ETmiss resolution scales approximately with the square root of the total hadronic energy in the event. Events with low values for these variables are rejected as it is most probable that ETmiss arises from jets mismeasurements, caused by instrumental and resolution e ects. mjj : this variable is calculated as the invariant mass of the leading two jets. In events where at least one of the leading jets is b-tagged, this variable aids in reducing the contamination from tt events. It is referred to as mbb for events where the two leading jets are b-tagged. mT: the event transverse mass mT is de ned as mT = and is used in the one-lepton control and signal regions to reduce the W +jets and q 2plTepEmiss T 2plTep pmiss T tt backgrounds. mbm`in: the minimum invariant mass of the lepton and one of the two b-jets is de ned as: mbm`in = mini=1;2 (m`bi ) : This variable is bound from above by to distinguish tt contributions from W t-channel single-top-quark events in the oneq mt2 m2W for tt production, and it is used lepton control regions. { 8 { Contransverse mass (mCT) [73]: this is the main discriminating variable in some of the zero-lepton channel signal regions [74]. It is used to measure the masses of pairproduced semi-invisibly decaying heavy particles. For identical decays of two heavy particles (e.g. the bottom squarks decaying exclusively as ~b1 ! b ~01) into two visible particles v1 and v2 (the b-quarks), and two invisible particles X1 and X2 (the ~01 for the signal), mCT is de ned as m2CT(v1; v2) = [ET(v1) + ET(v2)]2 [pT(v1) pT(v2)]2; with ET = q 2T + m2, and it has a kinematical endpoint at mCmTax = (mi2 p where i is the initially pair-produced particle. This variable is e ective in suppressing the top-quark pair production background (i = t; X = W ), for which the endpoint is m2X )=mi mTmin(jet1 4; ETmiss): this is the minimum of the transverse masses calculated using any of the leading four jets and the ETmiss in the event. For signal scenarios with low values of mCmTax, this kinematic variable is an alternative discriminating variable to reduce the tt background. amT2: the asymmetric transverse mass [75, 76] is a kinematic variable which can be used to separate processes in which two decays giving missing transverse momentum occur, and it is the main discriminating observable in the one-lepton channel signal regions. The amT2 de nition is based on the stransverse mass (mT2) [77]: m2T2( ) = min q(T1)+q(T2)=pTmiss h max nm2T(pT(v1); q(T1); ); m2T(pT(v2); q(T2); )oi ; where pT(vi) are reconstructed transverse momenta vectors and q(Ti) represent the missing transverse momenta from the two decays, with a total missing transverse momentum, pmiss; T is a free parameter representing the unknown mass of the invisible particles | here assumed to be zero. The a in amT2 indicates that the two visible decay legs are asymmetric, i.e. not composed of the same particles. In the case of events with one lepton (electron or muon) and two b-jets, the mT2 variable is calculated for di erent values of pT(v1) and pT(v2), by grouping the lepton and the two b-jets into two visible objects v1 and v2. The lepton needs to be paired with one of the two b-jets and the choice is driven by the value of mb`(n) | the invariant mass of the nth b-tagged jet and the lepton. If the two particles are correctly associated, this value has an upper bound given by the top quark mass. The value of amT2 is thus computed accordingly: { If mb`(1) and mb`( 2 ) are both > 170 GeV, neither of the two associations is compatible with the b-jet and the lepton originating from a top decay, so the event is rejected since all control, validation and signal regions require the smaller value of mb` to be < 170 GeV. { 9 { { If mb`(1) is < 170 GeV and mb`( 2 ) is > 170 GeV, amT2 is calculated with v1 = b1 + ` and v2 = b2. This is done because only the rst pairing is compatible with a top quark decay. with v1 = b1 and v2 = b2 + `. { Similarly, if mb`(1) is > 170 GeV and mb`( 2 ) is < 170 GeV, amT2 is calculated { If mb`(1) and mb`( 2 ) are both < 170 GeV, amT2 is calculated in both con gurations and its value is taken to be the smaller of the two. This must be done because, according to the mb` check, both pairings would be acceptable. A: this is the pT asymmetry of the leading two jets and is de ned as: A = pT(j1) pT(j1) + pT(j2) pT(j2) : The A variable is employed in scenarios where the mass-splitting between the bottom squark and the neutralino is small (< 20 GeV) and the selection exploits the presence of a high-momentum jet from initial-state radiation (ISR). 5.2 Zero-lepton channel selections The selection criteria for the zero-lepton channel SRs are summarized in table 1 and have the main requirement of no baseline leptons with pT > 10 GeV and two b-tagged jets. To exploit the kinematic properties over the large range of ~b1 and ~ 01 masses explored, three sets of SRs are de ned. The b0L-SRA regions are optimized to be sensitive to models with large mass-splitting between the ~b1 and the ~01, m(~b1; ~01) > 250 GeV. Incremental thresholds are imposed on the main discriminating variable, mCT, resulting in three overlapping regions (mCT >350, 450 and 550 GeV). Only events with ETmiss > 250 GeV are retained to ensure full e ciency of the trigger and comply with the expected signal topology. The two leading jets are required to be b-tagged whilst contamination from backgrounds with high jet multiplicity, particularly tt production, is suppressed by vetoing events with a fourth jet with pT > 50 GeV. To discriminate against multijet background, events where ETmiss is aligned with a jet in the transverse plane are rejected by requiring min[ (jet1 4; ETmiss)] > 0:4, and ETmiss=me > 0:25. A selection on the invariant mass of the two b-jets (mbb > 200 GeV) is applied to further enhance the signal yield over the SM background contributions. The b0L-SRB region targets intermediate mass-splitting between ~b1 and ~10, 50 < m(~b1; ~01) < 250 GeV. In these scenarios, the selections based on the mCT and mbb variables are no longer e ective and the variable mTmin(jet1 4; ETmiss) is employed to reduce SM background contributions from tt production, with events selected if mTmin(jet1 4; ETmiss) > 250 GeV. No more than four signal jets are allowed, to reduce additional hadronic activity in the selected events. As opposed to the b0L-SRA criteria, no veto based on the fourth jet pT is applied. A series of selections on the azimuthal angle between the two b-tagged jets and the ETmiss are implemented (j Z+jets background events. (b1; ETmiss)j < 2:0 and j (b2; ETmiss)j < 2:5) to reduce b0L-SRAx b0L-SRB No e= with pT >10 GeV after overlap removal j2 and (j3 or j4 or j5) 2{4 | < 2:0 < 2:5 | | | | SRA, the \x" denotes the mCT selection used. The term lepton is used in the table to refer to baseline electrons and muons. Jets (j1, j2, j3, j4 and j5) are labelled with an index corresponding to their decreasing order in pT. Finally, the b0L-SRC region targets events where a bottom squark pair is produced in association with a jet from ISR. This selection provides sensitivity to models with a small mass di erence between the ~b1 and the ~01, m(~b1; ~0) < 50 GeV, such that a 1 boosted bottom squark pair would satisfy the trigger requirements. To e ciently suppress tt and W +jets backgrounds, events are selected with one high-pT non-b-tagged jet and ETmiss > 500 GeV such that (j1; ETmiss) > 2:5. Stringent requirements on the minimum azimuthal angle between the jets and ETmiss are not suited for these scenarios where bjets have softer momenta and are possibly aligned with ETmiss. A large asymmetry A is required to reduce the multijet background while loosening the selection on the minimum azimuthal angle between the jets and ETmiss to min[ (jet1 2; ETmiss)] >0.2, and relaxing the pT threshold on signal jets to 20 GeV. 5.3 One-lepton channel selections The selection criteria for the one-lepton channel SRs are summarized in table 2. Events are required to have exactly one signal electron or muon and no additional baseline leptons, two b-tagged jets and a large ETmiss. Similarly to the zero-lepton channel, three sets of SRs are de ned to maximize the sensitivity depending on the mass hierarchy between ~b1(t~1) and ~ 1 ~10. Number of leptons (e; ) 1 any 2 SRA, the \x" denotes the me selection used. The term lepton is used in the table to refer to signal electrons and muons. Jets (j1, j2) are labelled with an index corresponding to their decreasing quired to have large ETmiss and ETmiss=pHT and The b1L-SRA regions are optimized for models with large j min above 0.4 to reduce the multijet m(~b1; ~01): events are rebackground contributions to negligible levels. Requirements on the mT and amT2 variables to be above 140 GeV and 250 GeV, respectively, are set to reject W +jets and tt events whilst the selection on the invariant mass of the two b-jets (mbb > 200 GeV) is applied to further enhance the signal yield over the SM background contributions. Two incremental thresholds are nally imposed on me (600 and 750 GeV) to de ne two overlapping signal regions. The b1L-SRB region is designed to be sensitive to compressed mass spectra, hence low mbb is expected, and the selections on the mT and amT2 variables must be relaxed to avoid loss of signal events. The min[mT(b-jet; ETmiss)] is employed to discriminate signal from tt events, which is the dominant SM background contribution. A third region, referred to as b1L-SRA300-2j, is de ned similarly to the b1L-SRAs but requiring no extra jets beside the two b-jets and me above 300 GeV. Such a selection also targets SUSY models characterized by compressed mass spectra. It is kinematically similar to the signal region in the Run-1 analysis [20] with a veto requirement on the number of jets with pT > 50 GeV. 6 Background estimation Monte Carlo simulation is used to estimate the background yield in the signal regions. The MC prediction for the major backgrounds is normalized to data in control regions HJEP1(207)95 (CR) constructed to enhance a particular background and to be kinematically similar but mutually exclusive to the signal regions. The control regions are de ned by explicitly requiring the presence of one or two leptons (electrons or muons) in the nal state together with further selection criteria similar to those of the corresponding signal region. To ensure that the b0L and b1L analyses can be statistically combined, the CRs associated with b0L and b1L SRs are mutually exclusive, with the exception of the single-top CR, where the same CR is used for both channels. The expected SM backgrounds are determined separately for each SR with a pro le likelihood t [78], referred to as the background-only t. The t uses as a constraint the observed event yields in a set of associated CRs to adjust the normalization of the main backgrounds, assuming that no signal is present. The inputs to the t for each SR include the number of events observed in its associated CRs and the number of events predicted by simulation in each region for all background processes. The latter are described by Poisson statistics. The systematic uncertainties in the expected values are included in the t as nuisance parameters. They are constrained by Gaussian distributions with widths corresponding to the sizes of the uncertainties and are treated as correlated, when appropriate, between the various regions. The product of the various probability density functions forms the likelihood, which the t maximizes by adjusting the background normalization and the nuisance parameters. Finally, the reliability of the MC extrapolation of the SM background estimate outside of the control regions is evaluated in several validation regions (VRs). 6.1 Background estimation in the zero-lepton signal regions The main SM background in the b0L signal regions is from the production of Z+jets followed by invisible decays of the Z boson. The production of top quark pairs, single top quarks and W +jets also results in important backgrounds, with their relative contributions depending on the speci c SR considered. Full details of the CR de nitions are given in tables 3 and 4. Three same- avour opposite-sign (SFOS) two-lepton (electron or muon) control regions with dilepton invariant mass near the Z boson mass (76 < m`` < 106 GeV) and two btagged jets provide data samples dominated by Z boson production. Signal leptons are considered, with the threshold for the second lepton pT loosened to 20 GeV. For these control regions, labelled in the following as b0L-CRzA, b0L-CRzB and b0L-CRzC, the pT of the leptons is added vectorially to the pmiss to mimic the expected missing transverse T momentum spectrum of Z ! events, and is indicated in the following as Emiss;cor (lepton T corrected). In addition, a selection is applied to the uncorrected ETmiss of the event, in order to further enhance the Z boson contribution. Events with one charged lepton in the nal state are used to de ne control regions dominated by W +jets and top quark production by requiring either one or two b-tagged jets, respectively. Selections on the variable mT are used to ensure that the lepton originates from a W decay. For the CRs corresponding to b0L-SRA, the contribution from tt and single top quark production are separated by applying the selection mbb < 200 GeV and mbb > 200 GeV, respectively. To further enhance the single-top-quark contribution, a selection on the minimum invariant mass of the lepton and one of the b-jets, mbm`in > Number of leptons (` = e; ) [76 {106] b0L-SRB. The term lepton is used in the table to refer to signal electrons and muons. Jets (j1, j2, j3 and j4) and leptons (`1 and `2) are labelled with an index corresponding to their decreasing term lepton is used in the table to refer to signal electrons and muons. Jets (j1, j2, j3 and j4) and leptons (`1 and `2) are labelled with an index corresponding to their decreasing order in pT. angle between the b-jets and the ETmiss value are applied to enhance the tt and W +jets contributions, while the single-top-quark background is estimated from MC simulation. The CRs corresponding to the b0L-SRC are de ned with one or two b-jets to enhance the tt and W +jets contributions, respectively. Finally, the single top quark production is estimated using the MC normalization. The contributions from dibosons (W W; W Z; ZZ), tt production associated with W and Z bosons, and other rare backgrounds are estimated from MC simulation for both the signal and the control regions and included in the t procedure, and are allowed to vary within their normalization uncertainty. The background from multijet production is estimated from data using a procedure described in detail in ref. [79] and modi ed to account for the heavy avour of the jets. The contribution from multijet production in all regions is found to be negligible. In total, four CRs are de ned for the b0L-SRA to estimate the contributions from W +jets, Z+jets, tt and single top quark production independently, while three CRs are de ned for each of the b0L-SRB and b0L-SRC to estimate W +jets, Z+jets and tt. The ETmiss distribution in b0L-CRwA and b0L-CRzC is shown in gures 2a and 2b, where good agreement with the SM prediction is achieved after the background-only t. The yields in all these CRs are shown in gure 3 and compared to the MC predictions before the likelihood t is performed, including only the statistical uncertainty of the MC samples. The bottom panel shows the value of the normalization factors, , used for each of the backgrounds tted and given taking into account statistical and detector-related systematic uncertainties. As a further validation, two alternative methods are used to estimate the Z+jets contribution. The rst method exploits the similarity of the Z+jets and +jets processes [79]. For a photon with pT signi cantly larger than the mass of the Z boson, the kinematics of +jets events strongly resemble those of Z+jets events. A set of dedicated control regions is de ned by requiring one isolated photon with pT > 145 GeV. The pT of the photon is vectorially added to the pTmiss, and the magnitude of this sum is used to replace the ETmissbased selections. The yields are then propagated to the SRs using a reweighting factor derived using the MC simulation. This factor takes into account the di erent kinematics of the two processes and residual e ects arising from the di erent geometrical acceptance and reconstruction e ciency for photons. In the second alternative method, applied to b0L-SRA only, the MC simulation is used to verify that the shape of the mCT distribution for events with no b-tagged jets is compatible with the shape of the mCT distribution for events where two b-tagged jets are present. A new highly populated Z+jets CR is dened, selecting Z ! `` events with no b-tagged jets. The mCT distribution in this CR is constructed using the two leading jets and is used to estimate the shape of the mCT distribution in the b0L-SRA, whilst the normalization in SRA is rescaled based on the ratio in data of Z ! `` events with no b-tagged jets to events with two b-tagged jets. Additional MC-based corrections are applied to take into account the two-lepton selection in this CR. The two alternative methods are in agreement within uncertainties with the estimates obtained with the pro le likelihood t to the control regions. Experimental and theoretical systematic uncertainties in the estimates from the nominal and alternative methods are taken into account (see section 7). Background estimation in the one-lepton signal regions The main SM background in the b1L signal regions is the production of tt and singletop-quark events in the W t channel. Two control regions (b1L-CRttA and b1L-CRttB) where the tt production is enhanced are de ned by inverting the amT2 selection. In the case of b1L-CRttA the mbb selection is also inverted, while for b1L-CRttB the min[mT(b-jet; ETmiss)] requirement is inverted. To allow a statistical combination of the results from the b0L-SRA and b1L-SRA regions the corresponding tt CRs are de ned to be orthogonal via the mCT selection. The single-top-quark contribution is estimated with the same CR employed by the b0L analysis. In the case of b1L-SRB the production of W +jets is no longer negligible, and is estimated by using a dedicated control region b1L-CRwB, where only one b-tagged jet is required. In total, two CRs are used to estimate the event yields in b1L-SRA and three CRs to estimate the yields in b1L-SRB. Full details of the CR selections are given in table 5. The distribution of mbb in b1L-CRstA and of mT in b1L-CRttB are presented in gures 2c and 2d to show the level of agreement achieved after the background-only t. The yields in all these CRs are also shown in gure 3 and compared to the direct MC prediction before the likelihood t is performed. The normalization parameters reported for each SR and SM background process include the statistical and detector-related systematic uncertainties. The decrease of the tt parameter from SRA to SRC is related to mismodelling in the description of tt processes by Powheg +Pythia 6 MC samples. Previous analyses [80] also found normalization factors considerably smaller than unity for tt background processes in similar regions of phase space. The W +jets and Z+jets normalization factors are larger than unity. This is possibly related to the fact that in the default Sherpa 2.2.1 the heavy- avour production fractions are not consistent with the measured values [81]. 6.3 Validation regions The results of the background-only t to the CRs are extrapolated to a set of VRs de ned to be similar to the SRs, with some of the selection criteria modi ed to enhance the background contribution, while maintaining a small signal contribution. For each SR, one or more VRs are de ned starting from the SR de nition and inverting or changing some of the selections as summarized in table 6. The number of events predicted by the background-only t is compared to the data in the upper panel of gure 4. The pull, de ned by the di erence between the observed number of events (nobs) and the predicted background yield (npred) divided by the total uncertainty ( tot), is shown for each region in the lower panel. No evidence of signi cant background mismodelling is observed in the VRs. HJEP1(207)95 any 2 j1 and (j2 or j3 or j4) regions. The term lepton is used in the table to refer to signal electrons and muons. Jets (j1, j2, j3 and j4) are labelled with an index corresponding to their decreasing order in pT. VR b0L-VRmctA b0L-VRmbbA b0L-VRzB b0L-VRttB b0L-VRttC b1L-VRamt2A b1L-VRmbbA b1L-VRamt2B b1L-VRmbbB Corresponding SR Selection changes b0L-SRA b0L-SRA b0L-SRB b0L-SRB SR (middle column) de ned in tables 1 and 2, with a few selection requirements changed (right column) to ensure the selection has low e ciency for the expected signal. s = 13 TeV, 36.1 fb-1 5 5 / / v v Data W + jets Single top Others b0L-CRwA SM total tt ttV Z + jets s = 13 TeV, 36.1 fb-1 Data Z + jets Others b0L-CRzC SM total tt M M S S 0 200 300 400 500 600 a a HJEP1(207)95 D D 200 250 300 350 400 450 50E0miss,cor [GeV] 550 T 600 ATLAS s = 13 TeV, 36.1 fb-1 E E D 200 300 400 500 600 700 800 900 1000 0 150 200 250 300 350 400 450 500 550 600 (b) ETmiss;cor in b0L-CRzC, (c) mbb in b1L-CRstA and (d) mT in b1L-CRttB. In all distributions the MC normalization is rescaled using the results from the background-only t, showing good agreement between data and the predicted SM shapes. The contributions from diboson, multijet and rare backgrounds are collectively called \Others". The shaded-grey band shows the detectorrelated systematic uncertainties and the statistical uncertainties of the MC samples as detailed in section 7 and the last bin includes over ow events. 7 Systematic uncertainties Several sources of experimental and theoretical systematic uncertainty in the signal and background estimates are considered in these analyses. Their impact is reduced through the normalization of the dominant backgrounds in the control regions de ned with kinematic selections resembling those of the corresponding signal region (see section 6). Experimental and theoretical uncertainties are included as nuisance parameters with Gaussian constraints in the likelihood ts, taking into account correlations between di erent regions. Uncertainties due to the numbers of events in the CRs are also introduced in the t for each region. The dominant contributions are summarized in table 7. s ss t tt n nn e ee vvEv 4 EfE11100044 ff 3 11100033 NN 1 11 111000−111 1.5 M M M S S/S a/ /ta a OOtthheerrss tttt ZZZ+++jjjeeetttsss ttttttVVV HJEP1(207)95 bbb000LLL---CCCRRRssstttAAA bbb000LLL---CCCRRRwwwAAA bbb000LLL---CCCRRRtttttAAA bbb000LLL---CCCRRRzzzAAA bbb000LLL---CCCRRRwwwBBB bbb000LLL---CCCRRRtttttBBB bbb000LLL---CCCRRRzzzBBB bbb000LLL---CCCRRRwwwCCC bbb000LLL---CCCRRRtttttCCC bbb000LLL---CCCRRRzzzCCC bbb111LLL---CCCRRRttttAAA bbb000LLL---CCCRRRsssttAtAA bbb111LLL---CCCRRRtttBtBB bbb111LLL---CCCRRRsssttBtBB bbb111LLL--C-CCRRRwwwBBB CRA t, as well as the results obtained by the likelihood t. In the top panel the normalization of the backgrounds is obtained from MC simulation and is the input value to the t. The contributions from diboson, multijet and rare backgrounds are collectively called \Others". The panels at the bottom show the ratio of the observed events in each CR to the MC estimate, and the value of the normalization factors ( ) obtained for each of the backgrounds tted. The uncertainty band around the MC prediction includes only the statistical uncertainty of the MC samples. The normalization factors are presented for each region and SM background process and take into account statistical and detector-related systematic uncertainties. Source n Region Experimental uncertainty JES JER b-tagging Z+jets W +jets Top production Theoretical modelling uncertainty b0L-SRAx b0L-SRB b0L-SRC b1L-SRAx b1L-SRB b1L-SRA300-2j 2.3 { 3.4% 0.9 { 3.3% 3.3 { 4.3% 9.6 { 12% 3.4 { 5.2% 2.2 { 3.1% region in zero-lepton and one-lepton channels. Uncertainties are quoted as relative to the total SM background predictions, with a range indicated for the three b0L-SRAs and the two b1L-SRAs. For theoretical modelling, uncertainties per dominant SM background process are quoted. The individual uncertainties can be correlated, and do not necessarily add in quadrature to the total background uncertainty. (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [88]. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. HJEP1(207)95 109 [INSPIRE]. (1974) 39 [INSPIRE]. Phys. B 78 (1974) 1 [INSPIRE]. (1974) 413 [INSPIRE]. 353 [INSPIRE]. Rev. D 24 (1981) 1681 [INSPIRE]. Phys. Lett. 105B (1981) 439 [INSPIRE]. (1981) 150 [INSPIRE]. [1] Yu. A. Golfand and E.P. Likhtman, Extension of the algebra of Poincare group generators and violation of p invariance, JETP Lett. 13 (1971) 323 [INSPIRE]. 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE]. [12] J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE]. [13] R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE]. (1976) 159 [INSPIRE]. [14] B. de Carlos and J.A. Casas, One loop analysis of the electroweak breaking in supersymmetric models and the ne tuning problem, Phys. Lett. B 309 (1993) 320 [hep-ph/9303291] [15] P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Phys. Lett. 64B [16] P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. 69B (1977) 489 [INSPIRE]. [17] G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. 76B (1978) 575 [INSPIRE]. [18] ATLAS collaboration, Search for bottom squark pair production in proton-proton collisions at s = 13 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 547 [arXiv:1606.08772]. [19] CMS collaboration, Search for the pair production of third-generation squarks with two-body decays to a bottom or charm quark and a neutralino in proton-proton collisions at p s = 13 TeV, arXiv:1707.07274 [INSPIRE]. [20] ATLAS collaboration, ATLAS Run 1 searches for direct pair production of third-generation HJEP1(207)95 [21] ATLAS collaboration, The ATLAS experiment at the CERN Large Hadron Collider, 2008 [22] ATLAS collaboration, ATLAS insertable B-layer technical design report, ATLAS-TDR-19 77 (2017) 317 [arXiv:1611.09661] [INSPIRE]. [24] ATLAS collaboration, Improved luminosity determination in pp collisions at p s = 7 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 73 (2013) 2518 [arXiv:1302.4393]. [25] ATLAS collaboration, 2015 start-up trigger menu and initial performance assessment of the ATLAS trigger using Run-2 data, ATL-DAQ-PUB-2016-001 (2016). [arXiv:1005.4568] [INSPIRE]. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. [27] GEANT4 collaboration, S. Agostinelli et al., GEANT4 | a simulation toolkit, Nucl. [28] ATLAS collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim, ATL-PHYS-PUB-2010-013 (2010). [29] J. Alwall et al., The automated computation of tree-level and next-to-leading order di erential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. [30] T. Sjostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE]. [31] ATLAS collaboration, ATLAS Pythia 8 tunes to 7 TeV data, ATL-PHYS-PUB-2014-021 (2014). JHEP 03 (2013) 166 [arXiv:1211.7278] [INSPIRE]. [arXiv:1207.1303] [INSPIRE]. [32] L. Lonnblad and S. Prestel, Merging multi-leg NLO matrix elements with parton showers, [33] R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [34] W. Beenakker, M. Kramer, T. Plehn, M. Spira and P.M. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE]. [35] W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, E. Laenen and I. Niessen, Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE]. 2637 [arXiv:1105.1110] [INSPIRE]. [37] C. Borschensky et al., Squark and gluino production cross sections in pp collisions at [arXiv:1002.2581] [INSPIRE]. [arXiv:1007.2241] [INSPIRE]. (2006) 026 [hep-ph/0603175] [INSPIRE]. 074018 [arXiv:1005.3457] [INSPIRE]. 81 (2010) 054028 [arXiv:1001.5034] [INSPIRE]. [45] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a W or H , Phys. Rev. D 82 (2010) 054018 [arXiv:1005.4451] [INSPIRE]. [46] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE]. [arXiv:0808.3674] [INSPIRE]. [47] T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [48] F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE]. [49] S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE]. The NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE]. [50] S. Hoche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: [51] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE]. (2001) 152 [INSPIRE]. [52] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 [53] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Update of parton distributions at NNLO, Phys. Lett. B 652 (2007) 292 [arXiv:0706.0459] [INSPIRE]. [54] ATLAS collaboration, Summary of ATLAS PYTHIA 8 tunes, ATL-PHYS-PUB-2012-003 (2012). p [55] ATLAS collaboration, Vertex reconstruction performance of the ATLAS detector at s = 13 TeV, ATL-PHYS-PUB-2015-026 (2015). proton-proton collisions at p 072002 [arXiv:1703.09665] [INSPIRE]. [56] ATLAS collaboration, Topological cell clustering in the ATLAS calorimeters and its [59] ATLAS collaboration, Jet energy scale measurements and their systematic uncertainties in s = 13 TeV with the ATLAS detector, Phys. Rev. D 96 (2017) [60] ATLAS collaboration, Selection of jets produced in 13 TeV proton-proton collisions with the HJEP1(207)95 ATLAS detector, ATLAS-CONF-2015-029 (2015). [61] ATLAS collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at s = 8 TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 581 [arXiv:1510.03823]. the ATLAS detector at p s = 13 TeV, ATL-PHYS-PUB-2015-015 (2015). [62] ATLAS collaboration, Jet calibration and systematic uncertainties for jets reconstructed in [63] ATLAS collaboration, Performance of b-jet identi cation in the ATLAS experiment, 2016 JINST 11 P04008 [arXiv:1512.01094] [INSPIRE]. Run, ATL-PHYS-PUB-2016-012 (2016). [64] ATLAS collaboration, Optimisation of the ATLAS b-tagging performance for the 2016 LHC [65] ATLAS collaboration, Electron e ciency measurements with the ATLAS detector using 2012 LHC proton{proton collision data, Eur. Phys. J. C 77 (2017) 195 [arXiv:1612.01456] [66] ATLAS collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data, Eur. Phys. J. C 74 (2014) 3071 [arXiv:1407.5063] [INSPIRE]. [67] ATLAS collaboration, Electron identi cation measurements in ATLAS using p data with 50 ns bunch spacing, ATL-PHYS-PUB-2015-041 (2015). [68] ATLAS collaboration, Muon reconstruction performance of the ATLAS detector in s = 13 TeV, Eur. Phys. J. C 76 (2016) 292 [69] ATLAS collaboration, Measurement of the tt production cross-section using e events with s = 13 TeV with the ATLAS detector, Phys. Lett. B 761 [70] ATLAS collaboration, Performance of algorithms that reconstruct missing transverse s = 8 TeV proton-proton collisions in the ATLAS detector, Eur. Phys. J. C [71] ATLAS collaboration, Jet energy measurement with the ATLAS detector in proton{proton s = 7 TeV, Eur. Phys. J. C 73 (2013) 2304 [arXiv:1112.6426]. [72] ATLAS collaboration, Measurement of the photon identi cation e ciencies with the ATLAS detector using LHC Run-1 data, Eur. Phys. J. C 76 (2016) 666 [arXiv:1606.01813] proton{proton collision data at p b-tagged jets in pp collisions at p (2016) 136 [arXiv:1606.02699]. momentum in p 77 (2017) 241 [arXiv:1609.09324]. collisions at p [73] D.R. Tovey, On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders, JHEP 04 (2008) 034 [arXiv:0802.2879] [INSPIRE]. [74] ATLAS collaboration, Search for direct third-generation squark pair production in nal states with missing transverse momentum and two b-jets in p ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631]. s = 8 TeV pp collisions with the the boundary to the crease, JHEP 11 (2009) 096 [arXiv:0908.3779] [INSPIRE]. [arXiv:0911.4126] [INSPIRE]. HJEP1(207)95 75 (2015) 153 [arXiv:1410.1280] [INSPIRE]. [79] ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in nal states with jets and missing transverse momentum using 4:7 fb 1 of p collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949]. s = 7 TeV proton-proton [80] ATLAS collaboration, Search for squarks and gluinos in events with isolated leptons, jets s = 8 TeV with the ATLAS detector, JHEP 04 and missing transverse momentum at p (2015) 116 [arXiv:1501.03555] [INSPIRE]. MG5 aMC@NLO, ATL-PHYS-PUB-2017-007 (2017). [81] ATLAS collaboration, Studies on top-quark Monte Carlo modelling with Sherpa and [82] ATLAS collaboration, Jet energy resolution in proton{proton collisions at ps = 7 TeV recorded in 2010 with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2306 [arXiv:1210.6210]. [83] ATLAS collaboration, Measurement of the cross section for the production of a W boson in association with b-jets in pp collisions at p B 707 (2012) 418 [arXiv:1109.1470]. [arXiv:0803.0883] [INSPIRE]. 72 (2012) 2225 [arXiv:1206.0041] [INSPIRE]. s = 7 TeV with the ATLAS detector, Phys. Lett. [86] T. Junk, Con dence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE]. [87] A.L. Read, Presentation of search results: the CL(s) technique, J. Phys. G 28 (2002) 2693 ATL-GEN-PUB-2016-002 (2016). [88] ATLAS collaboration, ATLAS computing acknowledgements 2016-2017, T. Agatonovic-Jovin14, C. Agheorghiesei28c, J.A. Aguilar-Saavedra128a;128f, S.P. Ahlen24, F. Ahmadov68;b, G. Aielli135a;135b, S. Akatsuka71, H. Akerstedt148a;148b, T.P.A. Akesson84, E. Akilli52, A.V. Akimov98, G.L. Alberghi22a;22b, J. Albert172, P. Albicocco50, M.J. Alconada Verzini74, S.C. Alderweireldt108, M. Aleksa32, I.N. Aleksandrov68, C. Alexa28b, G. Alexander155, T. Alexopoulos10, M. Alhroob115, B. Ali130, M. Aliev76a;76b, G. Alimonti94a, J. Alison33, S.P. Alkire38, B.M.M. Allbrooke151, B.W. Allen118, P.P. Allport19, A. Aloisio106a;106b, A. Alonso39, F. Alonso74, C. Alpigiani140, A.A. Alshehri56, M.I. Alstaty88, B. Alvarez Gonzalez32, C. Amelung25, D. Amidei92, S.P. Amor Dos Santos128a;128c, S. Amoroso32, G. Amundsen25, C. Anastopoulos141, L.S. Ancu52, N. Andari19, T. Andeen11, L. Barranco Navarro170, F. Barreiro85, J. Barreiro Guimar~aes da Costa35a, R. Bartoldus145, A.E. Barton75, P. Bartos146a, A. Basalaev125, A. Bassalat119;f, R.L. Bates56, S.J. Batista 161, J.R. Batley30, M. Battaglia139, M. Bauce134a;134b, F. Bauer138, H.S. Bawa145;g, J.B. Beacham113, M.D. Beattie75, T. Beau83, P.H. Beauchemin165, P. Bechtle23, H.P. Beck18;h, H.C. Beck57, K. Becker122, M. Becker86, C. Becot112, A.J. Beddall20e, A. Beddall20b, V.A. Bednyakov68, M. Bedognetti109, C.P. Bee150, T.A. Beermann32, M. Begalli26a, M. Begel27, J.K. Behr45, A.S. Bell81, E.L. Barberio91, D. Barberis53a;53b, M. Barbero88, T. Barillari103, M-S Barisits32, J.T. Barkeloo118, T. Barklow145, N. Barlow30, S.L. Barnes36c, B.M. Barnett133, O. Bessidskaia Bylund148a;148b, M. Bessner45, N. Besson138, A. Bethani87, S. Bethke103, A.J. Bevan79, J. Beyer103, R.M. Bianchi127, O. Biebel102, D. Biedermann17, R. Bielski87, G. Bella155, L. Bellagamba22a, A. Bellerive31, M. Bellomo154, K. Belotskiy100, D.P. Benjamin48, M. Benoit52, J.R. Bensinger25, S. Bentvelsen109, L. Beresford122, O. Beltramello32, N.L. Belyaev100, O. Benary155; , D. Benchekroun137a, M. Bender102, K. Bendtz148a;148b, N. Benekos10, Y. Benhammou155, E. Benhar Noccioli179, J. Benitez66, D. Alvarez Piqueras170, M.G. Alviggi106a;106b, B.T. Amadio16, Y. Amaral Coutinho26a, C.F. Anders60b, J.K. Anders77, K.J. Anderson33, A. Andreazza94a;94b, V. Andrei60a, R.M. Barnett16, Z. Barnovska-Blenessy36a, A. Baroncelli136a, G. Barone25, A.J. Barr122, S. Angelidakis37, I. Angelozzi109, A. Angerami38, A.V. Anisenkov111;c, N. Anjos13, A. Annovi126a;126b, C. Antel60a, M. Antonelli50, A. Antonov100; , D.J. Antrim166, S. Asai157, N. Asbah45, A. Ashkenazi155, L. Asquith151, K. Assamagan27, R. Astalos146a, M. Atkinson169, N.B. Atlay143, K. Augsten130, G. Avolio32, B. Axen16, M.K. Ayoub119, V. Araujo Ferraz26a, A.T.H. Arce48, R.E. Ardell80, F.A. Arduh74, J-F. Arguin97, F. Anulli134a, M. Aoki69, L. Aperio Bella32, G. Arabidze93, Y. Arai69, J.P. Araque128a, S. Argyropoulos66, M. Arik20a, A.J. Armbruster32, L.J. Armitage79, O. Arnaez161, H. Arnold51, M. Arratia30, O. Arslan23, A. Artamonov99; , G. Artoni122, S. Artz86, G. Azuelos97;d, A.E. Baas60a, M.J. Baca19, H. Bachacou138, K. Bachas76a;76b, M. Backes122, P. Bagnaia134a;134b, M. Bahmani42, H. Bahrasemani144, J.T. Baines133, M. Bajic39, O.K. Baker179, E.M. Baldin111;c, P. Balek175, F. Balli138, W.K. Balunas124, E. Banas42, A. Bandyopadhyay23, Sw. Banerjee176;e, A.A.E. Bannoura178, L. Barak155, J. Adelman110, M. Adersberger102, T. Adye133, A.A. A Y. Abulaiti148a;148b, B.S. Acharya167a;167b;a, S. Adachi157, L. Adamczyk41a, older139, Y. A k154, M. Beretta50, D. Berge109, E. Bergeaas Kuutmann168, N. Berger5, J. Beringer16, S. Berlendis58, N.R. Bernard89, G. Bernardi83, C. Bernius145, F.U. Bernlochner23, I.A. Bertram75, C. Bertsche45, D. Bertsche115, G.J. Besjes39, T. Berry80, P. Berta86, C. Bertella35a, G. Bertoli148a;148b, F. Bertolucci126a;126b, M. Bindi57, A. Bingul20b, C. Bini134a;134b, S. Biondi22a;22b, T. Bisanz57, C. Bittrich47, D.M. Bjergaard48, J.E. Black145, K.M. Black24, R.E. Blair6, T. Blazek146a, I. Bloch45, K. Bierwagen86, N.V. Biesuz126a;126b, M. Biglietti136a, T.R.V. Billoud97, H. Bilokon50, V. Bortolotto62a;62b;62c, D. Boscherini22a, M. Bosman13, J.D. Bossio Sola29, J. Boudreau127, J. Bou ard2, E.V. Bouhova-Thacker75, D. Boumediene37, J. Brosamer16, E. Brost110, J.H Broughton19, P.A. Bruckman de Renstrom42, F.M. Brochu30, I. Brock23, R. Brock93, G. Brooijmans38, T. Brooks80, W.K. Brooks34b, D. Bruncko146b, A. Bruni22a, G. Bruni22a, L.S. Bruni109, S. Bruno135a;135b, BH Brunt30, M. Bruschi22a, N. Bruscino23, P. Bryant33, L. Bryngemark45, T. Buanes15, Q. Buat144, P. Buchholz143, A.G. Buckley56, I.A. Budagov68, F. Buehrer51, M.K. Bugge121, D. Buscher51, V. Buscher86, P. Bussey56, J.M. Butler24, C.M. Buttar56, J.M. Butterworth81, P. Butti32, W. Buttinger27, A. Buzatu153, A.R. Buzykaev111;c, S. Cabrera Urban170, D. Caforio130, V.M. Cairo40a;40b, O. Cakir4a, N. Calace52, P. Cala ura16, A. Calandri88, G. Calderini83, P. Calfayan64, G. Callea40a;40b, L.P. Caloba26a, S. Calvente Lopez85, D. Calvet37, S. Calvet37, T.P. Calvet88, R. Caminal Armadans169, C. Camincher58, S. Campana32, M. Campanelli81, A. Camplani94a;94b, A. Campoverde143, V. Canale106a;106b, M. Cano Bret36c, R. Camacho Toro33, S. Camarda32, P. Camarri135a;135b, D. Cameron121, J. Cantero116, T. Cao155, M.D.M. Capeans Garrido32, I. Caprini28b, M. Caprini28b, J. Bracinik19, A. Brandt8, G. Brandt57, O. Brandt60a, U. Bratzler158, B. Brau89, C. Bourdarios119, S.K. Boutle56, A. Boveia113, J. Boyd32, I.R. Boyko68, A.J. Bozson80, J.E. Brau118, W.D. Breaden Madden56, K. Brendlinger45, A.J. Brennan91, L. Brenner109, R. Brenner168, S. Bressler175, D.L. Briglin19, T.M. Bristow49, D. Britton56, D. Britzger45, M. Capua40a;40b, R.M. Carbone38, R. Cardarelli135a, F. Cardillo51, I. Carli131, T. Carli32, G. Carlino106a, B.T. Carlson127, L. Carminati94a;94b, R.M.D. Carney148a;148b, S. Caron108, M. Casolino13, D.W. Casper166, R. Castelijn109, V. Castillo Gimenez170, N.F. Castro128a;k, A. Catinaccio32, J.R. Catmore121, A. Cattai32, J. Caudron23, V. Cavaliere169, E. Cavallaro13, D. Cavalli94a, M. Cavalli-Sforza13, V. Cavasinni126a;126b, E. Celebi20d, F. Ceradini136a;136b, L. Cerda Alberich170, A.S. Cerqueira26b, A. Cerri151, E. Carquin34b, S. Carra94a;94b, G.D. Carrillo-Montoya32, D. Casadei19, M.P. Casado13;j, G.A. Chelkov68;l, M.A. Chelstowska32, C. Chen36a, C. Chen67, H. Chen27, J. Chen36a, O. Bulekov100, D. Bullock8, T.J. Burch110, S. Burdin77, C.D. Burgard51, A.M. Burger5, B. Burghgrave110, K. Burka42, S. Burke133, I. Burmeister46, J.T.P. Burr122, E. Busato37, A.M. Cooper-Sarkar122, F. Cormier171, K.J.R. Cormier161, M. Corradi134a;134b, L. Cerrito135a;135b, F. Cerutti16, A. Cervelli18, S.A. Cetin20d, A. Chafaq137a, D. Chakraborty110, S.K. Chan59, W.S. Chan109, Y.L. Chan62a, P. Chang169, S. Cheatham167a;167c, A. Chegwidden93, S. Chekanov6, S.V. Chekulaev163a, J.D. Chapman30, D.G. Charlton19, C.C. Chau31, C.A. Chavez Barajas151, S. Che113, S. Chen35b, S. Chen157, X. Chen35c;m, Y. Chen70, H.C. Cheng92, H.J. Cheng35a, A. Cheplakov68, E. Cheremushkina132, R. Cherkaoui El Moursli137e, E. Cheu7, A.S. Chisholm32, A. Chitan28b, Y.H. Chiu172, M.V. Chizhov68, K. Choi64, K. Cheung63, L. Chevalier138, V. Chiarella50, G. Chiarelli126a;126b, G. Chiodini76a, A.R. Chomont37, S. Chouridou156, Y.S. Chow62a, V. Christodoulou81, M.C. Chu62a, J. Chudoba129, A.J. Chuinard90, J.J. Chwastowski42, L. Chytka117, A.K. Ciftci4a, D. Cinca46, V. Cindro78, I.A. Cioara23, C. Ciocca22a;22b, A. Ciocio16, F. Cirotto106a;106b, Z.H. Citron175, M. Citterio94a, M. Ciubancan28b, A. Clark52, B.L. Clark59, M.R. Clark38, P.J. Clark49, R.N. Clarke16, C. Clement148a;148b, Y. Coadou88, M. Cobal167a;167c, A. Coccaro52, J. Cochran67, L. Colasurdo108, B. Cole38, A.P. Colijn109, J. Collot58, T. Colombo166, P. Conde Muin~o128a;128b, E. Coniavitis51, S.H. Connell147b, I.A. Connelly87, S. Constantinescu28b, G. Conti32, F. Conventi106a;n, M. Cooke16, F. Corriveau90;o, A. Cortes-Gonzalez32, G. Cortiana103, G. Costa94a, M.J. Costa170, M. Cristinziani23, V. Croft112, G. Crosetti40a;40b, A. Cueto85, J. Cuth86, S. Czekierda42, P. Czodrowski32, G. D'amen22a;22b, S. D'Auria56, T. Cuhadar Donszelmann141, A.R. Cukierman145, J. Cummings179, M. Curatolo50, L. D'eramo83, M. D'Onofrio77, M.J. Da Cunha Sargedas De Sousa128a;128b, C. Da Via87, W. Dabrowski41a, T. Dado146a, T. Dai92, O. Dale15, F. Dallaire97, C. Dallapiccola89, M. Dam39, J.R. Dandoy124, M.F. Daneri29, N.P. Dang176, A.C. Daniells19, N.S. Dann87, J. Duarte-Campderros155, A. Dubreuil52, E. Duchovni175, G. Duckeck102, A. Ducourthial83, O.A. Ducu97;p, D. Duda109, A. Dudarev32, A.Chr. Dudder86, eld16, L. Du ot119, M. Duhrssen32, C. Dulsen178, M. Dumancic175, W.K. Di Clemente124, C. Di Donato106a;106b, A. Di Girolamo32, B. Di Girolamo32, B. Di Micco136a;136b, R. Di Nardo32, K.F. Di Petrillo59, A. Di Simone51, R. Di Sipio161, D. Di Valentino31, C. Diaconu88, M. Diamond161, F.A. Dias39, M.A. Diaz34a, M.A.B. do Vale26c, D. Dobos32, M. Dobre28b, C. Doglioni84, J. Dolejsi131, Z. Dolezal131, E.B. Diehl92, J. Dietrich17, S. D ez Cornell45, A. Dimitrievska14, J. Dingfelder23, P. Dita28b, S. Dita28b, F. Dittus32, F. Djama88, T. Djobava54b, J.I. Djuvsland60a, M. Donadelli26d, S. Donati126a;126b, P. Dondero123a;123b, J. Donini37, J. Dopke133, A. Doria106a, M.T. Dova74, A.T. Doyle56, E. Drechsler57, M. Dris10, Y. Du36b, S. Dhaliwal25, F.A. Di Bello52, A. Di Ciaccio135a;135b, L. Di Ciaccio5, C. Deterre45, K. Dette161, M.R. Devesa29, P.O. Deviveiros32, A. Dewhurst133, A. Durglishvili54b, D. Duschinger47, B. Dutta45, D. Duvnjak1, M. Dyndal45, A.E. Dumitriu28b, A.K. Duncan56, M. Dunford60a, H. Duran Yildiz4a, M. Duren55, D. Costanzo141, G. Cottin30, G. Cowan80, B.E. Cox87, K. Cranmer112, S.J. Crawley56, R.A. Creager124, G. Cree31, S. Crepe-Renaudin58, F. Crescioli83, W.A. Cribbs148a;148b, C. Ferretti92, F. Fiedler86, A. Filipcic78, M. Filipuzzi45, F. Filthaut108, M. Danninger171, M. Dano Ho mann138, V. Dao150, G. Darbo53a, S. Darmora8, D.R. Davis48, P. Davison81, E. Dawe91, I. Dawson141, K. De8, R. de Asmundis106a, J. Dassoulas3, A. Dattagupta118, T. Daubney45, W. Davey23, C. David45, T. Davidek131, A. De Benedetti115, S. De Castro22a;22b, S. De Cecco83, N. De Groot108, P. de Jong109, H. De la Torre93, F. De Lorenzi67, A. De Maria57, D. De Pedis134a, A. De Salvo134a, U. De Sanctis135a;135b, A. De Santo151, K. De Vasconcelos Corga88, J.B. De Vivie De Regie119, R. Debbe27, C. Debenedetti139, D.V. Dedovich68, N. Dehghanian3, I. Deigaard109, M. Del Gaudio40a;40b, J. Del Peso85, D. Delgove119, F. Deliot138, C.M. Delitzsch7, A. Dell'Acqua32, L. Dell'Asta24, M. Dell'Orso126a;126b, M. Della Pietra106a;106b, D. della Volpe52, M. Delmastro5, C. Delporte119, P.A. Delsart58, D.A. DeMarco161, S. Demers179, M. Demichev68, A. Demilly83, S.P. Denisov132, D. Denysiuk138, D. Derendarz42, J.E. Derkaoui137d, F. Derue83, P. Dervan77, K. Desch23, B.S. Dziedzic42, C. Eckardt45, K.M. Ecker103, R.C. Edgar92, T. Eifert32, G. Eigen15, K. Einsweiler16, T. Ekelof168, M. El Kacimi137c, R. El Kossei 88, V. Ellajosyula88, M. Ellert168, S. Elles5, F. Ellinghaus178, A.A. Elliot172, N. Ellis32, J. Elmsheuser27, M. Elsing32, D. Emeliyanov133, Y. Enari157, O.C. Endner86, J.S. Ennis173, J. Erdmann46, A. Ereditato18, M. Ernst27, S. Errede169, M. Escalier119, C. Escobar170, B. Esposito50, M. Ezzi137e, F. Fabbri22a;22b, L. Fabbri22a;22b, V. Fabiani108, G. Facini81, O. Estrada Pastor170, A.I. Etienvre138, E. Etzion155, H. Evans64, A. Ezhilov125, R.M. Fakhrutdinov132, S. Falciano134a, R.J. Falla81, J. Faltova32, Y. Fang35a, M. Fanti94a;94b, A. Farbin8, A. Farilla136a, C. Farina127, E.M. Farina123a;123b, T. Farooque93, S. Farrell16, S.M. Farrington173, P. Farthouat32, F. Fassi137e, P. Fassnacht32, D. Fassouliotis9, M. Faucci Giannelli49, A. Favareto53a;53b, C. Feng36b, E.J. Feng32, H. Feng92, M.J. Fenton56, A.B. Fenyuk132, L. Feremenga8, W.J. Fawcett122, L. Fayard119, O.L. Fedin125;q, W. Fedorko171, S. Feigl121, L. Feligioni88, P. Fernandez Martinez170, S. Fernandez Perez13, J. Ferrando45, A. Ferrari168, P. Ferrari109, R. Ferrari123a, D.E. Ferreira de Lima60b, A. Ferrer170, D. Ferrere52, A.G. Foster19, D. Fournier119, H. Fox75, S. Fracchia141, P. Francavilla83, M.J. Flowerdew103, G.T. Forcolin87, A. Formica138, F.A. Forster13, A. Forti87, M. Franchini22a;22b, S. Franchino60a, D. Francis32, L. Franconi121, M. Franklin59, M. Frate166, M. Fraternali123a;123b, D. Freeborn81, S.M. Fressard-Batraneanu32, B. Freund97, D. Froidevaux32, J.A. Frost122, C. Fukunaga158, T. Fusayasu104, J. Fuster170, C. Gabaldon58, O. Gabizon154, A. Gabrielli22a;22b, A. Gabrielli16, G.P. Gach41a, S. Gadatsch32, S. Gadomski80, G. Gagliardi53a;53b, L.G. Gagnon97, C. Galea108, B. Galhardo128a;128c, E.J. Gallas122, B.J. Gallop133, P. Gallus130, R.R.M. Fletcher124, T. Flick178, B.M. Flierl102, L.R. Flores Castillo62a, M. Fincke-Keeler172, K.D. Finelli152, M.C.N. Fiolhais128a;128c;r, L. Fiorini170, A. Fischer2, C. Fischer13, J. Fischer178, W.C. Fisher93, N. Flaschel45, I. Fleck143, P. Fleischmann92, C. Garc a170, J.E. Garc a Navarro170, J.A. Garc a Pascual35a, M. Garcia-Sciveres16, R.W. Gardner33, N. Garelli145, V. Garonne121, A. Gascon Bravo45, K. Gasnikova45, G. Galster39, K.K. Gan113, S. Ganguly37, Y. Gao77, Y.S. Gao145;g, F.M. Garay Walls34a, G. Gaycken23, E.N. Gazis10, C.N.P. Gee133, J. Geisen57, M. Geisen86, M.P. Geisler60a, K. Gellerstedt148a;148b, C. Gemme53a, M.H. Genest58, C. Geng92, S. Gentile134a;134b, M. Ghneimat23, B. Giacobbe22a, S. Giagu134a;134b, N. Giangiacomi22a;22b, C. Gentsos156, S. George80, D. Gerbaudo13, A. Gershon155, G. Ge ner46, S. Ghasemi143, C. Gatti50, A. Gaudiello53a;53b, G. Gaudio123a, I.L. Gavrilenko98, C. Gay171, P. Giromini59, G. Giugliarelli167a;167c, D. Giugni94a, F. Giuli122, C. Giuliani103, P. Giannetti126a;126b, S.M. Gibson80, M. Gignac171, M. Gilchriese16, D. Gillberg31, G. Gilles178, D.M. Gingrich3;d, M.P. Giordani167a;167c, F.M. Giorgi22a, P.F. Giraud138, M. Giulini60b, B.K. Gjelsten121, S. Gkaitatzis156, I. Gkialas9;s, E.L. Gkougkousis13, P. Gkountoumis10, L.K. Gladilin101, C. Glasman85, J. Glatzer13, P.C.F. Glaysher45, A. Glazov45, M. Goblirsch-Kolb25, J. Godlewski42, S. Goldfarb91, T. Golling52, D. Golubkov132, A. Gomes128a;128b;128d, R. Goncalo128a, R. Goncalves Gama26a, J. Goncalves Pinto Firmino Da Costa138, G. Gonella51, L. Gonella19, A. Gongadze68, S. Gonzalez de la Hoz170, S. Gonzalez-Sevilla52, L. Goossens32, P.A. Gorbounov99, K. Grimm75, S. Grinstein13;v, Ph. Gris37, J.-F. Grivaz119, S. Groh86, E. Gross175, J. Grosse-Knetter57, G.C. Grossi82, Z.J. Grout81, A. Grummer107, L. Guan92, W. Guan176, J. Guenther65, F. Guescini163a, D. Guest166, O. Gueta155, B. Gui113, E. Guido53a;53b, T. Guillemin5, S. Guindon32, U. Gul56, C. Gumpert32, J. Guo36c, W. Guo92, Y. Guo36a, R. Gupta43, S. Gupta122, G. Gustavino115, B.J. Gutelman154, P. Gutierrez115, N.G. Gutierrez Ortiz81, C. Gutschow81, C. Guyot138, M.P. Guzik41a, P. Hamal117, K. Hamano172, A. Hamilton147a, G.N. Hamity141, P.G. Hamnett45, L. Han36a, S. Han35a, K. Hanagaki69;w, K. Hanawa157, M. Hance139, B. Haney124, C. Gwenlan122, C.B. Gwilliam77, A. Haas112, C. Haber16, H.K. Hadavand8, N. Haddad137e, A. Hadef88, S. Hagebock23, M. Hagihara164, H. Hakobyan180; , M. Haleem45, J. Haley116, G. Halladjian93, G.D. Hallewell88, K. Hamacher178, C. Gossling46, M.I. Gostkin68, C.A. Gottardo23, C.R. Goudet119, D. Goujdami137c, H.A. Gordon27, I. Gorelov107, B. Gorini32, E. Gorini76a;76b, A. Gorisek78, A.T. Goshaw48, A.G. Goussiou140, N. Govender147b;t, E. Gozani154, L. Graber57, I. Grabowska-Bold41a, P.O.J. Gradin168, J. Gramling166, E. Gramstad121, S. Grancagnolo17, V. Gratchev125, K. Gregersen81, I.M. Gregor45, P. Grenier145, K. Grevtsov5, J. Gri P.M. Gravila28f, C. Gray56, H.M. Gray16, Z.D. Greenwood82;u, C. Grefe23, ths8, A.A. Grillo139, A.S. Hard176, T. Harenberg178, F. Hariri119, S. Harkusha95, P.F. Harrison173, P. Hanke60a, J.B. Hansen39, J.D. Hansen39, M.C. Hansen23, P.H. Hansen39, K. Hara164, N.M. Hartmann102, Y. Hasegawa142, A. Hasib49, S. Hassani138, S. Haug18, R. Hauser93, L. Hauswald47, L.B. Havener38, M. Havranek130, C.M. Hawkes19, R.J. Hawkings32, D. Hayakawa159, D. Hayden93, C.P. Hays122, J.M. Hays79, H.S. Hayward77, S.J. Haywood133, S.J. Head19, T. Heck86, V. Hedberg84, L. Heelan8, S. Heer23, K.K. Heidegger51, S. Heim45, T. Heim16, B. Heinemann45;x, J.J. Heinrich102, A.M. Henriques Correia32, S. Henrot-Versille119, G.H. Herbert17, H. Herde25, V. Herget177, Y. Hernandez Jimenez147c, H. Herr86, G. Herten51, R. Hertenberger102, L. Hervas32, T.C. Herwig124, G.G. Hesketh81, N.P. Hessey163a, J.W. Hetherly43, S. Higashino69, E. Higon-Rodriguez170, K. Hildebrand33, E. Hill172, J.C. Hill30, K.H. Hiller45, S.J. Hillier19, M. Hils47, I. Hinchli e16, M. Hirose51, D. Hirschbuehl178, B. Hiti78, O. Hladik129, X. Hoad49, J. Hobbs150, N. Hod163a, M.C. Hodgkinson141, T.R. Holmes33, M. Homann46, S. Honda164, T. Honda69, T.M. Hong127, P. Hodgson141, A. Hoecker32, M.R. Hoeferkamp107, F. Hoenig102, D. Hohn23, B.H. Hooberman169, W.H. Hopkins118, Y. Horii105, A.J. Horton144, J-Y. Hostachy58, A. Hostiuc140, S. Hou153, A. Hoummada137a, J. Howarth87, J. Hoya74, M. Hrabovsky117, S.-C. Hsu140, Q. Hu36a, S. Hu36c, Y. Huang35a, Z. Hubacek130, F. Hubaut88, J. Hrdinka32, I. Hristova17, J. Hrivnac119, T. Hryn'ova5, A. Hrynevich96, P.J. Hsu63, F. Huegging23, T.B. Hu man122, E.W. Hughes38, G. Hughes75, M. Huhtinen32, P. Huo150, N. Huseynov68;b, J. Huston93, J. Huth59, G. Iacobucci52, G. Iakovidis27, I. Ibragimov143, P. Ioannou9; , M. Iodice136a, K. Iordanidou38, V. Ippolito59, M.F. Isacson168, N. Ishijima120, M. Ishino157, M. Ishitsuka159, C. Issever122, S. Istin20a, F. Ito164, J.M. Iturbe Ponce62a, R. Iuppa162a;162b, H. Iwasaki69, J.M. Izen44, V. Izzo106a, S. Jabbar3, P. Jackson1, R.M. Jacobs23, V. Jain2, K.B. Jakobi86, K. Jakobs51, L. Iconomidou-Fayard119, Z. Idrissi137e, P. Iengo32, O. Igonkina109;y, T. Iizawa174, Y. Ikegami69, M. Ikeno69, Y. Ilchenko11;z, D. Iliadis156, N. Ilic145, G. Introzzi123a;123b, J. Jimenez Pena170, S. Jin35a, A. Jinaru28b, O. Jinnouchi159, H. Jivan147c, S. Jezequel5, H. Ji176, J. Jia150, H. Jiang67, Y. Jiang36a, Z. Jiang145, S. Jiggins81, M. Janus57, P.A. Janus41a, G. Jarlskog84, N. Javadov68;b, T. Javurek51, M. Javurkova51, F. Jeanneau138, L. Jeanty16, J. Jejelava54a;aa, A. Jelinskas173, P. Jenni51;ab, C. Jeske173, S. Jakobsen65, T. Jakoubek129, D.O. Jamin116, D.K. Jana82, R. Jansky52, J. Janssen23, P. Johansson141, K.A. Johns7, C.A. Johnson64, W.J. Johnson140, K. Jon-And148a;148b, L.S. Kaplan176, D. Kar147c, K. Karakostas10, N. Karastathis10, M.J. Kareem57, E. Karentzos10, S.N. Karpov68, Z.M. Karpova68, K. Karthik112, V. Kartvelishvili75, A.N. Karyukhin132, K. Kasahara164, L. Kashif176, R.D. Kass113, A. Kastanas149, Y. Kataoka157, C. Kato157, A. Katre52, J. Katzy45, K. Kawade70, K. Kawagoe73, N. Kanaya157, L. Kanjir78, V.A. Kantserov100, J. Kanzaki69, B. Kaplan112, T. Kawamoto157, G. Kawamura57, E.F. Kay77, V.F. Kazanin111;c, R. Keeler172, M. Khader169, F. Khalil-zada12, A. Khanov116, A.G. Kharlamov111;c, T. Kharlamova111;c, R. Kehoe43, J.S. Keller31, E. Kellermann84, J.J. Kempster80, J Kendrick19, H. Keoshkerian161, O. Kepka129, B.P. Kersevan78, S. Kersten178, R.A. Keyes90, A. Khodinov160, T.J. Khoo52, V. Khovanskiy99; , E. Khramov68, J. Khubua54b;ac, S. Kido70, C.R. Kilby80, H.Y. Kim8, S.H. Kim164, Y.K. Kim33, N. Kimura156, O.M. Kind17, B.T. King77, D. Kirchmeier47, J. Kirk133, A.E. Kiryunin103, T. Kishimoto157, D. Kisielewska41a, V. Kitali45, O. Kivernyk5, E. Kladiva146b, R.W.L. Jones75, S.D. Jones151, S. Jones7, T.J. Jones77, J. Jongmanns60a, P.M. Jorge128a;128b, J. Jovicevic163a, X. Ju176, A. Juste Rozas13;v, M.K. Kohler175, A. Kaczmarska42, M. Kado119, H. Kagan113, M. Kagan145, S.J. Kahn88, T. Kaji174, E. Kajomovitz48, C.W. Kalderon84, A. Kaluza86, S. Kama43, A. Kamenshchikov132, T. Klapdor-Kleingrothaus51, M.H. Klein92, M. Klein77, U. Klein77, K. Kleinknecht86, P. Klimek110, A. Klimentov27, R. Klingenberg46, T. Klingl23, T. Klioutchnikova32, A. Kobayashi157, D. Kobayashi159, T. Kobayashi157, M. Kobel47, M. Kocian145, P. Kodys131, T. Ko as31, E. Ko eman109, N.M. Kohler103, T. Koi145, M. Kolb60b, E.-E. Kluge60a, P. Kluit109, S. Kluth103, E. Kneringer65, E.B.F.G. Knoops88, A. Knue103, I. Koletsou5, A.A. Komar98; , T. Kondo69, N. Kondrashova36c, K. Koneke51, A.C. Konig108, T. Kono69;ad, R. Konoplich112;ae, N. Konstantinidis81, R. Kopeliansky64, O. Kuprash155, H. Kurashige70, L.L. Kurchaninov163a, Y.A. Kurochkin95, M.G. Kurth35a, V. Kus129, E.S. Kuwertz172, M. Kuze159, J. Kvita117, T. Kwan172, D. Kyriazopoulos141, A. La Rosa103, J.L. La Rosa Navarro26d, L. La Rotonda40a;40b, F. La Ru a40a;40b, C. Lacasta170, F. Lacava134a;134b, J. Lacey45, D.P.J. Lack87, H. Lacker17, D. Lacour83, E. Ladygin68, R. Lafaye5, B. Laforge83, T. Lagouri179, S. Lai57, S. Lammers64, W. Lampl7, E. Lancon27, U. Landgraf51, M.P.J. Landon79, M.C. Lanfermann52, K. Lantzsch23, A. Lanza123a, A. Lapertosa53a;53b, S. Laplace83, J.F. Laporte138, T. Lari94a, F. Lasagni Manghi22a;22b, M. Lassnig32, T.S. Lau62a, P. Laurelli50, V.S. Lang45, J.C. Lange13, R.J. Langenberg32, A.J. Lankford166, F. Lanni27, W. Lavrijsen16, A.T. Law139, P. Laycock77, T. Lazovich59, M. Lazzaroni94a;94b, B. Le91, O. Le Dortz83, E. Le Guirriec88, E.P. Le Quilleuc138, M. LeBlanc172, T. LeCompte6, F. Ledroit-Guillon58, C.A. Lee27, G.R. Lee133;af , S.C. Lee153, L. Lee59, B. Lefebvre90, W.A. Leight45, M.A.L. Leite26d, R. Leitner131, D. Lellouch175, B. Lemmer57, G. Lefebvre83, M. Lefebvre172, F. Legger102, C. Leggett16, G. Lehmann Miotto32, X. Lei7, K.J.C. Leney81, T. Lenz23, B. Lenzi32, R. Leone7, S. Leone126a;126b, C. Leonidopoulos49, G. Lerner151, C. Leroy97, A.A.J. Lesage138, C.G. Lester30, M. Levchenko125, J. Lev^eque5, H. Li150, L. Li36c, Q. Li35a, Q. Li36a, S. Li48, X. Li36c, Y. Li143, Z. Liang35a, B. Liberti135a, A. Liblong161, K. Lie62c, J. Liebal23, W. Liebig15, A. Limosani152, S.C. Lin182, T.H. Lin86, D. Levin92, L.J. Levinson175, M. Levy19, D. Lewis79, B. Li36a;ag, Changqiao Li36a, R.A. Linck64, B.E. Lindquist150, A.E. Lionti52, E. Lipeles124, A. Lipniacka15, F. Lo Sterzo153, E.M. Lobodzinska45, P. Loch7, F.K. Loebinger87, A. Loesle51, K.M. Loew25, A. Loginov179; , T. Lohse17, K. Lohwasser141, M. Lokajicek129, J.K.K. Liu122, J. Liu36b, J.B. Liu36a, K. Liu88, L. Liu169, M. Liu36a, Y.L. Liu36a, M. Lisovyi60b, T.M. Liss169;ah, A. Lister171, A.M. Litke139, B. Liu67, H. Liu92, H. Liu27, Y. Liu36a, M. Livan123a;123b, A. Lleres58, J. Llorente Merino35a, S.L. Lloyd79, C.Y. Lo62b, I. Korolkov13, E.V. Korolkova141, O. Kortner103, S. Kortner103, T. Kosek131, S. Koperny41a, A.K. Kopp51, K. Korcyl42, K. Kordas156, A. Korn81, A.A. Korol111;c, C. Kourkoumelis9, E. Kourlitis141, V. Kouskoura27, A.B. Kowalewska42, V.V. Kostyukhin23, A. Kotwal48, A. Koulouris10, A. Kourkoumeli-Charalampidi123a;123b, V.A. Kramarenko101, G. Kramberger78, D. Krasnopevtsev100, M.W. Krasny83, R. Kowalewski172, T.Z. Kowalski41a, C. Kozakai157, W. Kozanecki138, A.S. Kozhin132, P. Krieger161, K. Krizka16, K. Kroeninger46, H. Kroha103, J. Kroll129, J. Kroll124, A. Krasznahorkay32, D. Krauss103, J.A. Kremer41a, J. Kretzschmar77, K. Kreutzfeldt55, Y.P. Kulinich 169, M. Kuna134a;134b, T. Kunigo71, A. Kupco129, T. Kupfer46, T. Kubota91, H. Kucuk81, S. Kuday4b, J.T. Kuechler178, S. Kuehn32, A. Kugel60a, F. Kuger177, T. Kuhl45, V. Kukhtin68, R. Kukla88, Y. Kulchitsky95, S. Kuleshov34b, J. Kroseberg23, J. Krstic14, U. Kruchonak68, H. Kruger23, N. Krumnack67, M.C. Kruse48, B.A. Long24, J.D. Long169, R.E. Long75, L. Longo76a;76b, K.A. Looper113, J.A. Lopez34b, D. Lopez Mateos59, I. Lopez Paz13, A. Lopez Solis83, J. Lorenz102, N. Lorenzo Martinez5, M. Losada21, P.J. Losel102, X. Lou35a, A. Lounis119, J. Love6, P.A. Love75, H. Lu62a, N. Lu92, Y.J. Lu63, H.J. Lubatti140, C. Luci134a;134b, A. Lucotte58, C. Luedtke51, M.S. Lutz89, P.M. Luzi83, D. Lynn27, R. Lysak129, E. Lytken84, F. Lyu35a, F. Luehring64, W. Lukas65, L. Luminari134a, O. Lundberg148a;148b, B. Lund-Jensen149, C.M. Macdonald141, B. Macek78, J. Machado Miguens124;128b, D. Mada ari170, V. Lyubushkin68, H. Ma27, L.L. Ma36b, Y. Ma36b, G. Maccarrone50, A. Macchiolo103, R. Madar37, W.F. Mader47, A. Madsen45, J. Maeda70, S. Maeland15, T. Maeno27, A.S. Maevskiy101, V. Magerl51, J. Mahlstedt109, C. Maiani119, C. Maidantchik26a, A.A. Maier103, T. Maier102, A. Maio128a;128b;128d, O. Majersky146a, S. Majewski118, Y. Makida69, N. Makovec119, B. Malaescu83, Pa. Malecki42, V.P. Maleev125, F. Malek58, U. Mallik66, D. Malon6, C. Malone30, S. Maltezos10, S. Malyukov32, J. Mamuzic170, G. Mancini50, I. Mandic78, J. Maneira128a;128b, L. Manhaes de Andrade Filho26b, J. Manjarres Ramos47, K.H. Mankinen84, A. Mann102, A. Manousos32, B. Mansoulie138, Z. Marshall16, M.U.F Martensson168, S. Marti-Garcia170, C.B. Martin113, T.A. Martin173, V.J. Martin49, B. Martin dit Latour15, M. Martinez13;v, V.I. Martinez Outschoorn169, S. Martin-Haugh133, V.S. Martoiu28b, A.C. Martyniuk81, A. Marzin32, L. Masetti86, T. Mashimo157, R. Mashinistov98, J. Masik87, A.L. Maslennikov111;c, L. Massa135a;135b, P. Mastrandrea5, A. Mastroberardino40a;40b, T. Masubuchi157, P. Mattig178, J. Maurer28b, S.J. Max eld77, D.A. Maximov111;c, R. Mazini153, I. Maznas156, S.M. Mazza94a;94b, N.C. Mc Fadden107, G. Mc Goldrick161, S.P. Mc Kee92, A. McCarn92, R.L. McCarthy150, J.D. Mansour35a, R. Mantifel90, M. Mantoani57, S. Manzoni94a;94b, L. Mapelli32, G. Marceca29, L. March52, L. Marchese122, G. Marchiori83, M. Marcisovsky129, D.A. Millar79, D.W. Miller33, C. Mills49, A. Milov175, D.A. Milstead148a;148b, J. Mitrevski102, V.A. Mitsou170, A. Miucci18, P.S. Miyagawa141, A. Mizukami69, R.A. McPherson172;o, S. Meehan140, T.J. Megy51, S. Mehlhase102, A. Mehta77, T. Meideck58, K. Meier60a, B. Meirose44, D. Melini170;ai, B.R. Mellado Garcia147c, J.D. Mellenthin57, M. Melo146a, F. Meloni18, A. Melzer23, S.B. Menary87, L. Meng77, X.T. Meng92, A. Mengarelli22a;22b, S. Menke103, E. Meoni40a;40b, S. Mergelmeyer17, T.G. McCarthy103, L.I. McClymont81, E.F. McDonald91, J.A. Mcfayden32, G. Mchedlidze57, S.J. McMahon133, P.C. McNamara91, C.J. McNicol173, C. Merlassino18, P. Mermod52, L. Merola106a;106b, C. Meroni94a, F.S. Merritt33, A. Messina134a;134b, J. Metcalfe6, A.S. Mete166, C. Meyer124, J-P. Meyer138, J. Meyer109, H. Meyer Zu Theenhausen60a, F. Miano151, R.P. Middleton133, S. Miglioranzi53a;53b, L. Mijovic49, G. Mikenberg175, M. Mikestikova129, M. Mikuz78, M. Milesi91, A. Milic161, K. Monig45, J. Monk39, E. Monnier88, A. Montalbano150, J. Montejo Berlingen32, J.U. Mjornmark84, T. Mkrtchyan180, M. Mlynarikova131, T. Moa148a;148b, K. Mochizuki97, P. Mogg51, S. Mohapatra38, S. Molander148a;148b, R. Moles-Valls23, M.C. Mondragon93, F. Monticelli74, S. Monzani94a;94b, R.W. Moore3, N. Morange119, D. Moreno21, M. Moreno Llacer32, P. Morettini53a, S. Morgenstern32, D. Mori144, T. Mori157, M. Morii59, M. Morinaga174, V. Morisbak121, A.K. Morley32, G. Mornacchi32, J.D. Morris79, L. Morvaj150, P. Moschovakos10, M. Mosidze54b, H.J. Moss141, K. Nikolopoulos19, J.K. Nilsen121, P. Nilsson27, Y. Ninomiya157, A. Nisati134a, N. Nishu36c, R. Nisius103, I. Nitsche46, T. Nitta174, T. Nobe157, Y. Noguchi71, M. Nomachi120, I. Nomidis31, M.A. Nomura27, T. Nooney79, M. Nordberg32, N. Norjoharuddeen122, O. Novgorodova47, M. Nozaki69, L. Nozka117, K. Ntekas166, E. Nurse81, F. Nuti91, K. O'connor25, D.C. O'Neil144, A.A. O'Rourke45, V. O'Shea56, F.G. Oakham31;d, H. Oberlack103, T. Obermann23, J. Ocariz83, A. Ochi70, I. Ochoa38, J.P. Ochoa-Ricoux34a, S. Oda73, S. Odaka69, A. Oh87, S.H. Oh48, C.C. Ohm16, H. Ohman168, H. Oide53a;53b, H. Okawa164, Y. Okumura157, T. Okuyama69, A. Olariu28b, P. Mullen56, G.A. Mullier18, F.J. Munoz Sanchez87, W.J. Murray173;133, H. Musheghyan32, M. Muskinja78, A.G. Myagkov132;ak, M. Myska130, B.P. Nachman16, O. Nackenhorst52, K. Nagai122, R. Nagai69;ad, K. Nagano69, Y. Nagasaka61, K. Nagata164, M. Nagel51, E. Nagy88, A.M. Nairz32, Y. Nakahama105, K. Nakamura69, T. Nakamura157, C. Nellist119, A. Nelson166, M.E. Nelson122, S. Nemecek129, P. Nemethy112, M. Nessi32;al, M.S. Neubauer169, M. Neumann178, P.R. Newman19, T.Y. Ng62c, T. Nguyen Manh97, P.Yu. Nechaeva98, T.J. Neep138, A. Negri123a;123b, M. Negrini22a, S. Nektarijevic108, R.B. Nickerson122, R. Nicolaidou138, J. Nielsen139, V. Nikolaenko132;ak, I. Nikolic-Audit83, J. Moss145;aj , K. Motohashi159, R. Mount145, E. Mountricha27, E.J.W. Moyse89, S. Muanza88, F. Mueller103, J. Mueller127, R.S.P. Mueller102, D. Muenstermann75, I. Nakano114, R.F. Naranjo Garcia45, R. Narayan11, D.I. Narrias Villar60a, I. Naryshkin125, T. Naumann45, G. Navarro21, R. Nayyar7, H.A. Neal92, A.A. Minaenko132, Y. Minami157, I.A. Minashvili54b, A.I. Mincer112, B. Mindur41a, M. Mineev68, Y. Minegishi157, Y. Ming176, L.M. Mir13, K.P. Mistry124, T. Mitani174, L.F. Oleiro Seabra128a, S.A. Olivares Pino34a, D. Oliveira Damazio27, A. Olszewski42, J. Olszowska42, A. Onofre128a;128e, K. Onogi105, P.U.E. Onyisi11;z, H. Oppen121, M.J. Oreglia33, Y. Oren155, D. Orestano136a;136b, N. Orlando62b, R.S. Orr161, F. Ould-Saada121, A. Ouraou138, K.P. Oussoren109, Q. Ouyang35a, M. Owen56, R.E. Owen19, V.E. Ozcan20a, N. Ozturk8, K. Pachal144, A. Pacheco Pages13, B. Osculati53a;53b; , R. Ospanov36a, G. Otero y Garzon29, H. Otono73, M. Ouchrif137d, E.St. Panagiotopoulou10, I. Panagoulias10, C.E. Pandini126a;126b, L. Pacheco Rodriguez138, C. Padilla Aranda13, S. Pagan Griso16, M. Paganini179, F. Paige27, G. Palacino64, S. Palazzo40a;40b, S. Palestini32, M. Palka41b, D. Pallin37, J.G. Panduro Vazquez80, P. Pani32, S. Panitkin27, D. Pantea28b, L. Paolozzi52, Th.D. Papadopoulou10, K. Papageorgiou9;s, A. Paramonov6, D. Paredes Hernandez179, A.J. Parker75, M.A. Parker30, K.A. Parker45, F. Parodi53a;53b, J.A. Parsons38, U. Parzefall51, V.R. Pascuzzi161, J.M. Pasner139, E. Pasqualucci134a, S. Passaggio53a, Fr. Pastore80, S. Pataraia86, J.R. Pater87, T. Pauly32, B. Pearson103, S. Pedraza Lopez170, R. Pedro128a;128b, S.V. Peleganchuk111;c, O. Penc129, C. Peng35a, H. Peng36a, J. Penwell64, B.S. Peralva26b, M.M. Perego138, D.V. Perepelitsa27, F. Peri17, L. Perini94a;94b, H. Pernegger32, S. Perrella106a;106b, R. Peschke45, V.D. Peshekhonov68; , K. Peters45, R.F.Y. Peters87, B.A. Petersen32, T.C. Petersen39, E. Petit58, A. Petridis1, G. Piacquadio150, E. Pianori173, A. Picazio89, E. Piccaro79, M.A. Pickering122, C. Petridou156, P. Petro 119, E. Petrolo134a, M. Petrov122, F. Petrucci136a;136b, N.E. Pettersson89, A. Peyaud138, R. Pezoa34b, F.H. Phillips93, P.W. Phillips133, A. Puri169, P. Puzo119, J. Qian92, G. Qin56, Y. Qin87, A. Quadt57, M. Queitsch-Maitland45, D. Quilty56, S. Raddum121, V. Radeka27, V. Radescu122, S.K. Radhakrishnan150, P. Radlo 118, P. Rados91, F. Ragusa94a;94b, G. Rahal181, J.A. Raine87, S. Rajagopalan27, C. Rangel-Smith168, T. Rashid119, S. Raspopov5, L. Poggioli119, I. Pogrebnyak93, D. Pohl23, G. Polesello123a, A. Poley45, E. Plotnikova68, D. Pluth67, P. Podberezko111, R. Poettgen84, R. Poggi123a;123b, K. Pommes32, D. Ponomarenko100, L. Pontecorvo134a, G.A. Popeneciu28d, A. Policicchio40a;40b, R. Polifka32, A. Polini22a, C.S. Pollard56, V. Polychronakos27, R. Piegaia29, J.E. Pilcher33, A.D. Pilkington87, A.W.J. Pin87, M. Pinamonti135a;135b, J.L. Pinfold3, H. Pirumov45, M. Pitt175, L. Plazak146a, M.-A. Pleier27, V. Pleskot86, D.M. Portillo Quintero83, S. Pospisil130, K. Potamianos16, I.N. Potrap68, C.J. Potter30, K. Proko ev62c, F. Prokoshin34b, S. Protopopescu27, J. Proudfoot6, M. Przybycien41a, Y. Rodina88;am, S. Rodriguez Bosca170, A. Rodriguez Perez13, D. Rodriguez Rodriguez170, S. Roe32, C.S. Rogan59, O. R hne121, J. Rolo 59, A. Romaniouk100, M. Romano22a;22b, S.M. Romano Saez37, E. Romero Adam170, N. Rompotis77, M. Ronzani51, L. Roos83, S. Rosati134a, K. Rosbach51, P. Rose139, N.-A. Rosien57, E. Rossi106a;106b, L.P. Rossi53a, J.H.N. Rosten30, R. Rosten140, M. Rotaru28b, J. Rothberg140, D. Rousseau119, A. Rozanov88, Y. Rozen154, X. Ruan147c, M.G. Ratti94a;94b, D.M. Rauch45, F. Rauscher102, S. Rave86, I. Ravinovich175, J.H. Rawling87, M. Raymond32, A.L. Read121, N.P. Readio 58, M. Reale76a;76b, D.M. Rebuzzi123a;123b, A. Redelbach177, G. Redlinger27, R. Reece139, R.G. Reed147c, K. Reeves44, L. Rehnisch17, J. Reichert124, A. Reiss86, C. Rembser32, H. Ren35a, M. Rescigno134a, S. Resconi94a, E.D. Resseguie124, S. Rettie171, E. Reynolds19, O.L. Rezanova111;c, P. Reznicek131, R. Rezvani97, R. Richter103, S. Richter81, E. Richter-Was41b, O. Ricken23, M. Ridel83, P. Rieck103, C.J. Riegel178, J. Rieger57, H. Potti11, T. Poulsen84, J. Poveda32, M.E. Pozo Astigarraga32, P. Pralavorio88, A. Pranko16, S. Prell67, D. Price87, M. Primavera76a, S. Prince90, N. Proklova100, F. Rubbo145, F. Ruhr51, A. Ruiz-Martinez31, Z. Rurikova51, N.A. Rusakovich68, O. Rifki115, M. Rijssenbeek150, A. Rimoldi123a;123b, M. Rimoldi18, L. Rinaldi22a, G. Ripellino149, B. Ristic32, E. Ritsch32, I. Riu13, F. Rizatdinova116, E. Rizvi79, C. Rizzi13, R.T. Roberts87, S.H. Robertson90;o, A. Robichaud-Veronneau90, D. Robinson30, J.E.M. Robinson45, A. Robson56, E. Rocco86, C. Roda126a;126b, D. Scheirich131, M. Schernau166, C. Schiavi53a;53b, S. Schier139, L.K. Schildgen23, C. Schillo51, M. Schioppa40a;40b, S. Schlenker32, K.R. Schmidt-Sommerfeld103, A. Schwartzman145, T.A. Schwarz92, H. Schweiger87, Ph. Schwemling138, K. Schmieden32, C. Schmitt86, S. Schmitt45, S. Schmitz86, U. Schnoor51, L. Schoe el138, A. Schoening60b, B.D. Schoenrock93, E. Schopf23, M. Schott86, J.F.P. Schouwenberg108, J. Schovancova32, S. Schramm52, N. Schuh86, A. Schulte86, M.J. Schultens23, H.-C. Schultz-Coulon60a, H. Schulz17, M. Schumacher51, B.A. Schumm139, Ph. Schune138, F. Scuri126a;126b, F. Scutti91, J. Searcy92, P. Seema23, S.C. Seidel107, A. Seiden139, R. Schwienhorst93, J. Schwindling138, A. Sciandra23, G. Sciolla25, M. Scornajenghi40a;40b, J.M. Seixas26a, G. Sekhniaidze106a, K. Sekhon92, S.J. Sekula43, N. Semprini-Cesari22a;22b, S. Senkin37, C. Serfon121, L. Serin119, L. Serkin167a;167b, M. Sessa136a;136b, R. Seuster172, H. Severini115, T. S ligoj78, F. Sforza165, A. Sfyrla52, E. Shabalina57, N.W. Shaikh148a;148b, L.Y. Shan35a, R. Shang169, J.T. Shank24, M. Shapiro16, P.B. Shatalov99, K. Shaw167a;167b, S.M. Shaw87, A. Shcherbakova148a;148b, C.Y. Shehu151, Y. Shen115, N. Sherafati31, P. Sherwood81, L. Shi153;an, S. Shimizu70, C.O. Shimmin179, O. Sasaki69, K. Sato164, E. Sauvan5, G. Savage80, P. Savard161;d, N. Savic103, C. Sawyer133, L. Sawyer82;u, J. Saxon33, C. Sbarra22a, A. Sbrizzi22a;22b, T. Scanlon81, H. Santos128a, I. Santoyo Castillo151, A. Sapronov68, J.G. Saraiva128a;128d, B. Sarrazin23, D.A. Scannicchio166, J. Schaarschmidt140, P. Schacht103, B.M. Schachtner102, D. Schaefer32, L. Schaefer124, R. Schaefer45, J. Schae er86, S. Schaepe23, S. Schaetzel60b, U. Schafer86, A.C. Scha er119, D. Schaile102, R.D. Schamberger150, V.A. Schegelsky125, J. Silva128a;128d, S.B. Silverstein148a, V. Simak130, Lj. Simic14, S. Simion119, E. Simioni86, B. Simmons81, M. Simon86, P. Sinervo161, N.B. Sinev118, M. Sioli22a;22b, G. Siragusa177, I. Siral92, S.Yu. Sivoklokov101, J. Sjolin148a;148b, M.B. Skinner75, P. Skubic115, M. Slater19, T. Slavicek130, M. Slawinska42, K. Sliwa165, R. Slovak131, V. Smakhtin175, B.H. Smart5, O. Smirnova84, J.W. Smith57, M.N.K. Smith38, R.W. Smith38, M. Smizanska75, J. Smiesko146a, N. Smirnov100, S.Yu. Smirnov100, Y. Smirnov100, L.N. Smirnova101;ap, K. Smolek130, A.A. Snesarev98, I.M. Snyder118, S. Snyder27, R. Sobie172;o, F. Socher47, G. Rybkin119, S. Ryu6, A. Ryzhov132, G.F. Rzehorz57, A.F. Saavedra152, G. Sabato109, S. Sacerdoti29, H.F-W. Sadrozinski139, R. Sadykov68, F. Safai Tehrani134a, P. Saha110, H.L. Russell90, J.P. Rutherfoord7, N. Ruthmann32, Y.F. Ryabov125, M. Rybar169, M. Sahinsoy60a, M. Saimpert45, M. Saito157, T. Saito157, H. Sakamoto157, Y. Sakurai174, H. Sandaker121, R.L. Sandbach79, C.O. Sander45, M. Sandho 178, C. Sandoval21, D.P.C. Sankey133, M. Sannino53a;53b, Y. Sano105, A. Sansoni50, C. Santoni37, D. Salihagic103, A. Salnikov145, J. Salt170, D. Salvatore40a;40b, F. Salvatore151, G. Salamanna136a;136b, J.E. Salazar Loyola34b, D. Salek109, P.H. Sales De Bruin168, A. Salvucci62a;62b;62c, A. Salzburger32, D. Sammel51, D. Sampsonidis156, D. Sampsonidou156, J. Sanchez170, V. Sanchez Martinez170, A. Sanchez Pineda167a;167c, M. Shimojima104, I.P.J. Shipsey122, S. Shirabe73, M. Shiyakova68;ao, J. Shlomi175, A. Shmeleva98, D. Shoaleh Saadi97, M.J. Shochet33, S. Shojaii94a;94b, D.R. Shope115, S. Shrestha113, E. Shulga100, M.A. Shupe7, P. Sicho129, A.M. Sickles169, P.E. Sidebo149, E. Sideras Haddad147c, O. Sidiropoulou177, A. Sidoti22a;22b, F. Siegert47, Dj. Sijacki14, S. Stapnes121, E.A. Starchenko132, G.H. Stark33, J. Stark58, S.H Stark39, P. Staroba129, P. Starovoitov60a, S. Starz32, R. Staszewski42, M. Stegler45, P. Steinberg27, B. Stelzer144, A. So er155, A. S gaard49, D.A. Soh153, G. Sokhrannyi78, C.A. Solans Sanchez32, M. Solar130, E.Yu. Soldatov100, U. Soldevila170, A.A. Solodkov132, A. Soloshenko68, M. Spousta131, R.D. St. Denis56; , A. Stabile94a, R. Stamen60a, S. Stamm17, E. Stanecka42, R.W. Stanek6, C. Stanescu136a, M.M. Stanitzki45, B.S. Stapf109, C.L. Sotiropoulou126a;126b, R. Soualah167a;167c, A.M. Soukharev111;c, D. South45, O.V. Solovyanov132, V. Solovyev125, P. Sommer51, H. Son165, A. Sopczak130, D. Sosa60b, B.C. Sowden80, S. Spagnolo76a;76b, M. Spalla126a;126b, M. Spangenberg173, F. Spano80, D. Sperlich17, F. Spettel103, T.M. Spieker60a, R. Spighi22a, G. Spigo32, L.A. Spiller91, H.J. Stelzer32, O. Stelzer-Chilton163a, H. Stenzel55, G.A. Stewart56, M.C. Stockton118, M. Stoebe90, G. Stoicea28b, P. Stolte57, S. Stonjek103, A.R. Stradling8, A. Straessner47, M.E. Stramaglia18, J. Strandberg149, S. Strandberg148a;148b, M. Strauss115, P. Strizenec146b, R. Strohmer177, D.M. Strom118, R. Stroynowski43, A. Strubig49, A.A. Talyshev111;c, J. Tanaka157, M. Tanaka159, R. Tanaka119, S. Tanaka69, R. Tanioka70, B.B. Tannenwald113, S. Tapia Araya34b, S. Tapprogge86, S. Tarem154, G.F. Tartarelli94a, P. Tas131, M. Tasevsky129, T. Tashiro71, E. Tassi40a;40b, A. Tavares Delgado128a;128b, X. Sun3, K. Suruliz151, C.J.E. Suster152, M.R. Sutton151, S. Suzuki69, M. Svatos129, M. Swiatlowski33, S.P. Swift2, I. Sykora146a, T. Sykora131, D. Ta51, K. Tackmann45, R. Takashima72, E.H. Takasugi103, T. Takeshita142, Y. Takubo69, M. Talby88, J. Taenzer155, A. Ta ard166, R. Ta rout163a, E. Tahirovic79, N. Taiblum155, H. Takai27, S.A. Stucci27, B. Stugu15, N.A. Styles45, D. Su145, J. Su127, S. Suchek60a, Y. Sugaya120, M. Suk130, V.V. Sulin98, DMS Sultan162a;162b, S. Sultansoy4c, T. Sumida71, S. Sun59, L. Tomlinson87, M. Tomoto105, L. Tompkins145;ar, K. Toms107, B. Tong59, P. Tornambe51, E. Torrence118, H. Torres47, E. Torro Pastor140, J. Toth88;as, Y. Tayalati137e, A.C. Taylor107, A.J. Taylor49, G.N. Taylor91, P.T.E. Taylor91, W. Taylor163b, P. Teixeira-Dias80, D. Temple144, H. Ten Kate32, P.K. Teng153, R.J. Teuscher161;o, T. Theveneaux-Pelzer88, F. Thiele39, J.P. Thomas19, J.J. Teoh120, F. Tepel178, S. Terada69, K. Terashi157, J. Terron85, S. Terzo13, M. Testa50, J. Thomas-Wilsker80, P.D. Thompson19, A.S. Thompson56, L.A. Thomsen179, E. Thomson124, M.J. Tibbetts16, R.E. Ticse Torres88, V.O. Tikhomirov98;aq, Yu.A. Tikhonov111;c, S. Timoshenko100, P. Tipton179, S. Tisserant88, K. Todome159, S. Todorova-Nova5, S. Todt47, J. Tojo73, S. Tokar146a, K. Tokushuku69, E. Tolley59, M. Trzebinski42, A. Trzupek42, K.W. Tsang62a, J.C-L. Tseng122, P.V. Tsiareshka95, G. Tsipolitis10, N. Tsirintanis9, S. Tsiskaridze13, V. Tsiskaridze51, E.G. Tskhadadze54a, K.M. Tsui62a, I.I. Tsukerman99, V. Tsulaia16, S. Tsuno69, D. Tsybychev150, Y. Tu62b, A. Tudorache28b, V. Tudorache28b, T.T. Tulbure28a, A.N. Tuna59, S.A. Tupputi22a;22b, I.M. Trigger163a, S. Trincaz-Duvoid83, M.F. Tripiana13, W. Trischuk161, B. Trocme58, A. Trofymov45, C. Troncon94a, M. Trottier-McDonald16, M. Trovatelli172, L. Truong147b, F. Touchard88, D.R. Tovey141, C.J. Treado112, T. Trefzger177, F. Tresoldi151, A. Tricoli27, A. Undrus27, G. Unel166, F.C. Ungaro91, Y. Unno69, C. Unverdorben102, J. Urban146b, S. Turchikhin68, D. Turgeman175, I. Turk Cakir4b;at, R. Turra94a, P.M. Tuts38, G. Ucchielli22a;22b, I. Ueda69, M. Ughetto148a;148b, F. Ukegawa164, G. Unal32, P. Urquijo91, P. Urrejola86, G. Usai8, J. Usui69, L. Vacavant88, V. Vacek130, B. Vachon90, K.O.H. Vadla121, A. Vaidya81, C. Valderanis102, E. Valdes Santurio148a;148b, M. Valente52, S. Valentinetti22a;22b, A. Valero170, L. Valery13, S. Valkar131, A. Vallier5, J.A. Valls Ferrer170, W. Van Den Wollenberg109, H. van der Graaf109, P. van J. Van Nieuwkoop144, I. van Vulpen109, M.C. van Woerden109, M. Vanadia135a;135b, Gemmeren6, T. Vazquez Schroeder90, J. Veatch57, V. Veeraraghavan7, L.M. Veloce161, K.E. Varvell152, J.G. Vasquez179, G.A. Vasquez34b, F. Vazeille37, D. Vazquez Furelos13, F. Veloso128a;128c, S. Veneziano134a, A. Ventura76a;76b, M. Venturi172, N. Venturi32, A. Venturini25, V. Vercesi123a, M. Verducci136a;136b, W. Verkerke109, A.T. Vermeulen109, M. Villa22a;22b, M. Villaplana Perez94a;94b, E. Vilucchi50, M.G. Vincter31, J.C. Vermeulen109, M.C. Vetterli144;d, N. Viaux Maira34b, O. Viazlo84, I. Vichou169; , T. Vickey141, O.E. Vickey Boeriu141, G.H.A. Viehhauser122, S. Viel16, L. Vigani122, W. Vandelli32, A. Vaniachine160, P. Vankov109, G. Vardanyan180, R. Vari134a, E.W. Varnes7, C. Varni53a;53b, T. Varol43, D. Varouchas119, A. Vartapetian8, P. Wagner23, W. Wagner178, J. Wagner-Kuhr102, H. Wahlberg74, S. Wahrmund47, M. Vogel178, P. Vokac130, G. Volpi13, H. von der Schmitt103, E. von Toerne23, V.B. Vinogradov68, A. Vishwakarma45, C. Vittori22a;22b, I. Vivarelli151, S. Vlachos10, V. Vorobel131, K. Vorobev100, M. Vos170, R. Voss32, J.H. Vossebeld77, N. Vranjes14, M. Vranjes Milosavljevic14, V. Vrba130, M. Vreeswijk109, R. Vuillermet32, I. Vukotic33, J. Walder75, R. Walker102, W. Walkowiak143, V. Wallangen148a;148b, C. Wang35b, R. Wang6, S.M. Wang153, T. Wang38, W. Wang153;av, W. Wang36a;aw, Z. Wang36c, C. Wang36b;au, F. Wang176, H. Wang16, H. Wang3, J. Wang45, J. Wang152, Q. Wang115, C. Wanotayaroj118, A. Warburton90, C.P. Ward30, D.R. Wardrope81, A. Washbrook49, P.M. Watkins19, A.T. Watson19, M.F. Watson19, G. Watts140, S. Watts87, B.M. Waugh81, A.F. Webb11, S. Webb86, M.S. Weber18, S.W. Weber177, S.A. Weber31, J.S. Webster6, A.R. Weidberg122, B. Weinert64, J. Weingarten57, M. Weirich86, C. Weiser51, H. Weits109, B.W. Whitmore75, F.J. Wickens133, W. Wiedenmann176, M. Wielers133, P. Werner32, M. Wessels60a, T.D. Weston18, K. Whalen118, N.L. Whallon140, P.S. Wells32, T. Wenaus27, T. Wengler32, S. Wenig32, N. Wermes23, M.D. Werner67, A.M. Wharton75, A.S. White92, A. White8, M.J. White1, R. White34b, D. Whiteson166, H.H. Williams124, S. Williams109, C. Willis93, S. Willocq89, J.A. Wilson19, C. Wiglesworth39, L.A.M. Wiik-Fuchs51, A. Wildauer103, F. Wilk87, H.G. Wilkens32, I. Wingerter-Seez5, E. Winkels151, F. Winklmeier118, O.J. Winston151, B.T. Winter23, K.W. Wozniak42, M. Wu33, S.L. Wu176, X. Wu52, Y. Wu92, T.R. Wyatt87, M. Wittgen145, M. Wobisch82;u, T.M.H. Wolf109, R. Wol 88, M.W. Wolter42, H. Wolters128a;128c, V.W.S. Wong171, S.D. Worm19, B.K. Wosiek42, J. Wotschack32, B.M. Wynne49, S. Xella39, Z. Xi92, L. Xia35c, D. Xu35a, L. Xu27, T. Xu138, B. Yabsley152, S. Yacoob147a, D. Yamaguchi159, Y. Yamaguchi159, A. Yamamoto69, S. Yamamoto157, T. Yamanaka157, F. Yamane70, M. Yamatani157, Y. Yamazaki70, Z. Yan24, H. Yang36c, H. Yang16, Y. Yang153, Z. Yang15, W-M. Yao16, Y.C. Yap83, Y. Yasu69, E. Yatsenko5, K.H. Yau Wong23, J. Ye43, S. Ye27, I. Yeletskikh68, E. Yigitbasi24, E. Yildirim86, K. Yorita174, K. Yoshihara124, C. Young145, C.J.S. Young32, J. Yu8, J. Yu67, S.P.Y. Yuen23, I. Yusu 30;ax, B. Zabinski42, G. Zacharis10, R. Zaidan13, A.M. Zaitsev132;ak, N. Zakharchuk45, J. Zalieckas15, A. Zaman150, S. Zambito59, D. Zanzi91, C. Zeitnitz178, G. Zemaityte122, A. Zemla41a, J.C. Zeng169, Q. Zeng145, O. Zenin132, T. Zenis146a, D. Zerwas119, D. Zhang92, F. Zhang176, G. Zhang36a;aw, A. Zoccoli22a;22b, R. Zou33, M. zur Nedden17, L. Zwalinski32 R. Zhang36a;au, X. Zhang36b, Y. Zhang35a, Z. Zhang119, X. Zhao43, Y. Zhao36b;ay, H. Zhang119, J. Zhang6, L. Zhang51, L. Zhang36a, M. Zhang169, P. Zhang35b, R. Zhang23, Z. Zhao36a, A. Zhemchugov68, B. Zhou92, C. Zhou176, L. Zhou43, M. Zhou35a, M. Zhou150, Z. Zinonos103, M. Zinser86, M. Ziolkowski143, L. Zivkovic14, G. Zobernig176, N. Zhou35c, C.G. Zhu36b, H. Zhu35a, J. Zhu92, Y. Zhu36a, X. Zhuang35a, K. Zhukov98, A. Zibell177, D. Zieminska64, N.I. Zimine68, C. Zimmermann86, S. Zimmermann51, 1 Department of Physics, University of Adelaide, Adelaide, Australia 2 Physics Department, SUNY Albany, Albany NY, United States of America 3 Department of Physics, University of Alberta, Edmonton AB, Canada 4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey 5 LAPP, CNRS/IN2P3 and Universite Savoie Mont Blanc, Annecy-le-Vieux, France 6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America 7 Department of Physics, University of Arizona, Tucson AZ, United States of America 8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America 9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece 10 Physics Department, National Technical University of Athens, Zografou, Greece 11 Department of Physics, The University of Texas at Austin, Austin TX, United States of America 12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan 13 Institut de F sica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain 14 Institute of Physics, University of Belgrade, Belgrade, Serbia 15 Department for Physics and Technology, University of Bergen, Bergen, Norway HJEP1(207)95 CA, United States of America University of Bern, Bern, Switzerland 17 Department of Physics, Humboldt University, Berlin, Germany 18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, 19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (e) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey Bologna, Italy Paulo, Brazil 21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia 22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Universita di Bologna, 23 Physikalisches Institut, University of Bonn, Bonn, Germany 24 Department of Physics, Boston University, Boston MA, United States of America 25 Department of Physics, Brandeis University, Waltham MA, United States of America 26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao 27 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America 28 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania 29 Departamento de F sica, Universidad de Buenos Aires, Buenos Aires, Argentina 30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 31 Department of Physics, Carleton University, Ottawa ON, Canada 32 CERN, Geneva, Switzerland 33 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America 34 (a) Departamento de F sica, Ponti cia Universidad Catolica de Chile, Santiago; (b) Departamento de F sica, Universidad Tecnica Federico Santa Mar a, Valpara so, Chile 35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China 36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics, Shandong University, Shandong; (c) Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai(also at PKU-CHEP), China 37 Universite Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France 38 Nevis Laboratory, Columbia University, Irvington NY, United States of America 39 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark 40 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Universita della Calabria, Rende, Italy 41 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland 42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland 43 Physics Department, Southern Methodist University, Dallas TX, United States of America 44 Physics Department, University of Texas at Dallas, Richardson TX, United States of America 45 DESY, Hamburg and Zeuthen, Germany Grenoble, France 47 Institut fur Kern- und Teilchenphysik, Technische Universitat Dresden, Dresden, Germany 48 Department of Physics, Duke University, Durham NC, United States of America 49 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom 50 INFN e Laboratori Nazionali di Frascati, Frascati, Italy 51 Fakultat fur Mathematik und Physik, Albert-Ludwigs-Universitat, Freiburg, Germany 53 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Universita di Genova, Genova, Italy 54 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia 55 II Physikalisches Institut, Justus-Liebig-Universitat Giessen, Giessen, Germany 56 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom 57 II Physikalisches Institut, Georg-August-Universitat, Gottingen, Germany 58 Laboratoire de Physique Subatomique et de Cosmologie, Universite Grenoble-Alpes, CNRS/IN2P3, 59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States 60 (a) Kirchho -Institut fur Physik, Ruprecht-Karls-Universitat Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universitat Heidelberg, Heidelberg, Germany 61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan 62 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China 63 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 64 Department of Physics, Indiana University, Bloomington IN, United States of America 65 Institut fur Astro- und Teilchenphysik, Leopold-Franzens-Universitat, Innsbruck, Austria 66 University of Iowa, Iowa City IA, United States of America 67 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America 68 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia 69 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan 70 Graduate School of Science, Kobe University, Kobe, Japan 71 Faculty of Science, Kyoto University, Kyoto, Japan 72 Kyoto University of Education, Kyoto, Japan 73 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan Italy 74 Instituto de F sica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina 75 Physics Department, Lancaster University, Lancaster, United Kingdom 76 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Universita del Salento, Lecce, 77 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom 78 Department of Experimental Particle Physics, Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia 79 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom 80 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom 81 Department of Physics and Astronomy, University College London, London, United Kingdom 82 Louisiana Tech University, Ruston LA, United States of America 83 Laboratoire de Physique Nucleaire et de Hautes Energies, UPMC and Universite Paris-Diderot and CNRS/IN2P3, Paris, France 84 Fysiska institutionen, Lunds universitet, Lund, Sweden 85 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain 86 Institut fur Physik, Universitat Mainz, Mainz, Germany 88 CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France 89 Department of Physics, University of Massachusetts, Amherst MA, United States of America 90 Department of Physics, McGill University, Montreal QC, Canada 91 School of Physics, University of Melbourne, Victoria, Australia 92 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America 93 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States 94 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Universita di Milano, Milano, Italy 95 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of 96 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Republic of 97 Group of Particle Physics, University of Montreal, Montreal QC, Canada 98 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia 99 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia 100 National Research Nuclear University MEPhI, Moscow, Russia 101 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, 102 Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Munchen, Germany 103 Max-Planck-Institut fur Physik (Werner-Heisenberg-Institut), Munchen, Germany 104 Nagasaki Institute of Applied Science, Nagasaki, Japan 105 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan 106 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Universita di Napoli, Napoli, Italy 107 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States 108 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands 109 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, 110 Department of Physics, Northern Illinois University, DeKalb IL, United States of America 111 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia 112 Department of Physics, New York University, New York NY, United States of America 113 Ohio State University, Columbus OH, United States of America 114 Faculty of Science, Okayama University, Okayama, Japan 115 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America 116 Department of Physics, Oklahoma State University, Stillwater OK, United States of America 117 Palacky University, RCPTM, Olomouc, Czech Republic 118 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America 119 LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France 120 Graduate School of Science, Osaka University, Osaka, Japan 121 Department of Physics, University of Oslo, Oslo, Norway 122 Department of Physics, Oxford University, Oxford, United Kingdom 123 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Universita di Pavia, Pavia, Italy 124 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America 125 National Research Centre \Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia 126 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Universita di Pisa, Pisa, Italy 127 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of 128 (a) Laboratorio de Instrumentaca~o e F sica Experimental de Part culas - LIP, Lisboa; (b) Faculdade Vergata, Roma, Italy Roma, Italy de Ci^encias, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de F sica Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f) Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Granada; (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal 129 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic 130 Czech Technical University in Prague, Praha, Czech Republic 131 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 132 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia 133 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom 134 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Universita di Roma, Roma, Italy 135 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Universita di Roma Tor 136 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Universita Roma Tre, 137 (a) Faculte des Sciences Ain Chock, Reseau Universitaire de Physique des Hautes Energies Universite Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculte des Sciences Semlalia, Universite Cadi Ayyad, LPHEA-Marrakech; (d) Faculte des Sciences, Universite Mohamed Premier and LPTPM, Oujda; (e) Faculte des sciences, Universite Mohammed V, Rabat, Morocco 138 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France 139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America 140 Department of Physics, University of Washington, Seattle WA, United States of America 141 Department of Physics and Astronomy, University of She eld, She eld, United Kingdom 142 Department of Physics, Shinshu University, Nagano, Japan 143 Department Physik, Universitat Siegen, Siegen, Germany 144 Department of Physics, Simon Fraser University, Burnaby BC, Canada 145 SLAC National Accelerator Laboratory, Stanford CA, United States of America 146 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic 147 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa United States of America 148 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden 149 Physics Department, Royal Institute of Technology, Stockholm, Sweden 150 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, Israel Tokyo, Tokyo, Japan 151 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom 152 School of Physics, University of Sydney, Sydney, Australia 153 Institute of Physics, Academia Sinica, Taipei, Taiwan 154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel 155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece 157 International Center for Elementary Particle Physics and Department of Physics, The University of 158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan 159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan 160 Tomsk State University, Tomsk, Russia ON, Canada 162 (a) INFN-TIFPA; (b) University of Trento, Trento, Italy 163 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto 164 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan 165 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America 166 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of 167 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Universita di Udine, Udine, Italy 168 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden 169 Department of Physics, University of Illinois, Urbana IL, United States of America 171 Department of Physics, University of British Columbia, Vancouver BC, Canada 172 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada 173 Department of Physics, University of Warwick, Coventry, United Kingdom 174 Waseda University, Tokyo, Japan 175 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel 176 Department of Physics, University of Wisconsin, Madison WI, United States of America 177 Fakultat fur Physik und Astronomie, Julius-Maximilians-Universitat, Wurzburg, Germany 178 Fakultat fur Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universitat Wuppertal, Wuppertal, Germany 179 Department of Physics, Yale University, New Haven CT, United States of America 180 Yerevan Physics Institute, Yerevan, Armenia 181 Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 182 Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan a Also at Department of Physics, King's College London, London, United Kingdom b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan c Also at Novosibirsk State University, Novosibirsk, Russia d Also at TRIUMF, Vancouver BC, Canada e Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America f Also at Physics Department, An-Najah National University, Nablus, Palestine g Also at Department of Physics, California State University, Fresno CA, United States of America h Also at Department of Physics, University of Fribourg, Fribourg, Switzerland i Also at II Physikalisches Institut, Georg-August-Universitat, Gottingen, Germany j Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain k Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal University, Dolgoprudny, Russia l Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State United States of America m Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China n Also at Universita di Napoli Parthenope, Napoli, Italy o Also at Institute of Particle Physics (IPP), Canada p Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania q Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, r Also at Borough of Manhattan Community College, City University of New York, New York City, Greece Africa t Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South u Also at Louisiana Tech University, Ruston LA, United States of America w Also at Graduate School of Science, Osaka University, Osaka, Japan y Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University z Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of aa Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia ab Also at CERN, Geneva, Switzerland ac Also at Georgian Technical University (GTU),Tbilisi, Georgia ad Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan ae Also at Manhattan College, New York NY, United States of America af Also at Departamento de F sica, Ponti cia Universidad Catolica de Chile, Santiago, Chile ag Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of ah Also at The City College of New York, New York NY, United States of America ai Also at Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Granada, Portugal aj Also at Department of Physics, California State University, Sacramento CA, United States of ak Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia al Also at Departement de Physique Nucleaire et Corpusculaire, Universite de Geneve, Geneva, am Also at Institut de F sica d'Altes Energies (IFAE), The Barcelona Institute of Science and Sciences, So a, Bulgaria ao Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Hungary Deceased ap Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia aq Also at National Research Nuclear University MEPhI, Moscow, Russia ar Also at Department of Physics, Stanford University, Stanford CA, United States of America as Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, au Also at CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France ay Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France [2] D.V. Volkov and V.P. Akulov , Is the neutrino a goldstone particle? , Phys. Lett. 46B ( 1973 ) [3] J. Wess and B. Zumino , Supergauge transformations in four-dimensions, Nucl . Phys. B 70 [4] J. Wess and B. Zumino , Supergauge invariant extension of quantum electrodynamics , Nucl. [5] S. Ferrara and B. Zumino , Supergauge invariant Yang-Mills theories , Nucl. Phys. B 79 [6] A. Salam and J.A. Strathdee , Supersymmetry and nonabelian gauges , Phys. Lett. 51B ( 1974 ) [7] N. Sakai , Naturalness in supersymmetric guts, Z. Phys. C 11 ( 1981 ) 153 [INSPIRE]. [8] S. Dimopoulos , S. Raby and F. Wilczek , Supersymmetry and the scale of uni cation , Phys. [9] L.E. Iban ~ez and G.G. Ross , Low-energy predictions in supersymmetric grand uni ed theories , [10] S. Dimopoulos and H. Georgi , Softly broken supersymmetry and SU(5), Nucl . Phys. B 193 [11] H. Goldberg , Constraint on the photino mass from cosmology , Phys. Rev. Lett . 50 ( 1983 ) squarks at the Large Hadron Collider , Eur. Phys. J. C 75 ( 2015 ) 510 [arXiv: 1506 .08616] [23] ATLAS collaboration, Performance of the ATLAS Trigger System in 2015, Eur . Phys. J. C [26] ATLAS collaboration, The ATLAS simulation infrastructure , Eur. Phys. J. C 70 ( 2010 ) 823 [36] W. Beenakker et al., Squark and gluino hadroproduction , Int. J. Mod. Phys. A 26 ( 2011 ) s = 13 , 14 , 33 and 100 TeV, Eur. Phys. J. C 74 ( 2014 ) 3174 [arXiv: 1407 .5066] [INSPIRE]. [38] S. Alioli , P. Nason , C. Oleari and E. Re , A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX , JHEP 06 ( 2010 ) 043 [39] H.-L. Lai et al., New parton distributions for collider physics , Phys. Rev. D 82 ( 2010 ) 074024 [40] T. Sj ostrand, S. Mrenna and P.Z. Skands , PYTHIA 6 . 4 physics and manual , JHEP 05 [41] P.Z. Skands , Tuning Monte Carlo generators: the Perugia tunes , Phys. Rev. D 82 ( 2010 ) [42] M. Czakon and A. Mitov , Top++ : a program for the calculation of the top-pair cross-section at hadron colliders , Comput. Phys. Commun . 185 ( 2014 ) 2930 [arXiv: 1112 .5675] [INSPIRE]. [43] N. Kidonakis , Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production , Phys. Rev. D 83 ( 2011 ) 091503 [arXiv: 1103 .2792] [INSPIRE]. [44] N. Kidonakis , NNLL resummation for s-channel single top quark production , Phys. Rev. D performance in LHC Run 1, Eur. Phys. J. C 77 ( 2017 ) 490 [arXiv: 1603 .02934] [INSPIRE]. [57] M. Cacciari , G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm , JHEP 04 ( 2008 ) [58] M. Cacciari , G.P. Salam and G. Soyez, FastJet user manual , Eur. Phys. J. C 72 ( 2012 ) 1896 [75] A.J. Barr , B. Gripaios and C.G. Lester , Transverse masses and kinematic constraints: from [76] P. Konar , K. Kong , K.T. Matchev and M. Park , Dark matter particle spectroscopy at the LHC: generalizing M(T2) to asymmetric event topologies , JHEP 04 ( 2010 ) 086 [77] C.G. Lester and D.J. Summers , Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders , Phys. Lett. B 463 ( 1999 ) 99 [ hep -ph/9906349] [INSPIRE]. [78] M. Baak et al., HistFitter software framework for statistical data analysis , Eur. Phys. J . C [84] M. Bahr et al., HERWIG++ physics and manual , Eur. Phys. J. C 58 ( 2008 ) 639 [85] S. Gieseke , C. Rohr and A. Siodmok , Colour reconnections in HERWIG++, Eur. Phys. J. C M. Aaboud137d , G. Aad88, B. Abbott115 , O. Abdinov12 ; , B. Abeloos119 , S.H. Abidi161 , O.S. AbouZeid139 , N.L. Abraham151 , H. Abramowicz155, H. Abreu154 , R. Abreu118 , D. Boerner178 , D. Bogavac102 , A.G. Bogdanchikov111 , C. Bohm148a , V. Boisvert80, P. Bokan168;i, T. Bold41a, A.S. Boldyrev101 , A.E. Bolz60b , M. Bomben83 , M. Bona79 , M. Boonekamp138 , A. Borisov132, G. Borissov75, J. Bortfeldt32 , D. Bortoletto122 , V.S. Bobrovnikov111;c, S.S. Bocchetta84, A . Bocci48, C. Bock102, M. Boehler51 , C. Helsens32, R.C.W. Henderson75, Y. Heng176, S. Henkelmann171, C.A. Marin Tobon32 , M. Marjanovic37 , D.E. Marley92 , F. Marroquim26a , S.P. Marsden87,

This is a preview of a remote PDF:

The ATLAS collaboration, M. Aaboud, G. Aad, B. Abbott, O. Abdinov, B. Abeloos, S. H. Abidi, O. S. AbouZeid, N. L. Abraham, H. Abramowicz, H. Abreu, R. Abreu, Y. Abulaiti, B. S. Acharya, S. Adachi, L. Adamczyk, J. Adelman, M. Adersberger, T. Adye, A. A. Affolder, Y. Afik, T. Agatonovic-Jovin, C. Agheorghiesei, J. A. Aguilar-Saavedra, S. P. Ahlen, F. Ahmadov, G. Aielli, S. Akatsuka, H. Akerstedt, T. P. A. Åkesson, E. Akilli, A. V. Akimov, G. L. Alberghi, J. Albert, P. Albicocco, M. J. Alconada Verzini, S. C. Alderweireldt, M. Aleksa, I. N. Aleksandrov, C. Alexa, G. Alexander, T. Alexopoulos, M. Alhroob, B. Ali, M. Aliev, G. Alimonti, J. Alison, S. P. Alkire, B. M. M. Allbrooke, B. W. Allen, P. P. Allport, A. Aloisio, A. Alonso, F. Alonso, C. Alpigiani, A. A. Alshehri, M. I. Alstaty, B. Alvarez Gonzalez, D. Álvarez Piqueras, M. G. Alviggi, B. T. Amadio, Y. Amaral Coutinho, C. Amelung, D. Amidei, S. P. Amor Dos Santos, S. Amoroso, G. Amundsen, C. Anastopoulos, L. S. Ancu, N. Andari, T. Andeen, C. F. Anders, J. K. Anders, K. J. Anderson, A. Andreazza, V. Andrei, S. Angelidakis, I. Angelozzi, A. Angerami, A. V. Anisenkov, N. Anjos, A. Annovi, C. Antel, M. Antonelli, A. Antonov, D. J. Antrim, F. Anulli, M. Aoki, L. Aperio Bella, G. Arabidze, Y. Arai, J. P. Araque, V. Araujo Ferraz, A. T. H. Arce, R. E. Ardell, F. A. Arduh, J-F. Arguin, S. Argyropoulos, M. Arik, A. J. Armbruster, L. J. Armitage, O. Arnaez, H. Arnold, M. Arratia, O. Arslan, A. Artamonov, G. Artoni, S. Artz, S. Asai, N. Asbah, A. Ashkenazi, L. Asquith, K. Assamagan, R. Astalos, M. Atkinson, N. B. Atlay, K. Augsten, G. Avolio, B. Axen, M. K. Ayoub, G. Azuelos, A. E. Baas, M. J. Baca, H. Bachacou, K. Bachas, M. Backes, P. Bagnaia, M. Bahmani, H. Bahrasemani, J. T. Baines, M. Bajic, O. K. Baker, E. M. Baldin, P. Balek, F. Balli, W. K. Balunas, E. Banas, A. Bandyopadhyay, Sw. Banerjee, A. A. E. Bannoura, L. Barak, E. L. Barberio, D. Barberis, M. Barbero, T. Barillari, M-S Barisits, J. T. Barkeloo, T. Barklow, N. Barlow, S. L. Barnes, B. M. Barnett, R. M. Barnett, Z. Barnovska-Blenessy, A. Baroncelli, G. Barone, A. J. Barr, L. Barranco Navarro, F. Barreiro, J. Barreiro Guimarães da Costa, R. Bartoldus, A. E. Barton, P. Bartos, A. Basalaev, A. Bassalat, R. L. Bates, S. J. Batista, J. R. Batley, M. Battaglia, M. Bauce, F. Bauer, H. S. Bawa, J. B. Beacham, M. D. Beattie, T. Beau, P. H. Beauchemin, P. Bechtle, H. P. Beck, H. C. Beck, K. Becker, M. Becker, C. Becot, A. J. Beddall, A. Beddall, V. A. Bednyakov, M. Bedognetti, C. P. Bee, T. A. Beermann, M. Begalli, M. Begel, J. K. Behr, A. S. Bell, G. Bella, L. Bellagamba, A. Bellerive, M. Bellomo, K. Belotskiy, O. Beltramello, N. L. Belyaev, O. Benary, D. Benchekroun, M. Bender, K. Bendtz, N. Benekos, Y. Benhammou, E. Benhar Noccioli, J. Benitez, D. P. Benjamin, M. Benoit, J. R. Bensinger, S. Bentvelsen, L. Beresford, M. Beretta, D. Berge, E. Bergeaas Kuutmann, N. Berger, J. Beringer, S. Berlendis, N. R. Bernard, G. Bernardi, C. Bernius, F. U. Bernlochner, T. Berry, P. Berta, C. Bertella, G. Bertoli, F. Bertolucci, I. A. Bertram, C. Bertsche, D. Bertsche, G. J. Besjes, O. Bessidskaia Bylund, M. Bessner, N. Besson, A. Bethani, S. Bethke, A. J. Bevan, J. Beyer, R. M. Bianchi, O. Biebel, D. Biedermann, R. Bielski, K. Bierwagen, N. V. Biesuz, M. Biglietti, T. R. V. Billoud, H. Bilokon, M. Bindi, A. Bingul, C. Bini, S. Biondi, T. Bisanz, C. Bittrich, D. M. Bjergaard, J. E. Black, K. M. Black, R. E. Blair, T. Blazek, I. Bloch, C. Blocker, A. Blue, W. Blum, U. Blumenschein, S. Blunier, G. J. Bobbink, V. S. Bobrovnikov, S. S. Bocchetta, A. Bocci, C. Bock, M. Boehler, D. Boerner, D. Bogavac, A. G. Bogdanchikov, C. Bohm, V. Boisvert, P. Bokan, T. Bold, A. S. Boldyrev, A. E. Bolz, M. Bomben, M. Bona, M. Boonekamp, A. Borisov, G. Borissov, J. Bortfeldt, D. Bortoletto, V. Bortolotto, D. Boscherini, M. Bosman, J. D. Bossio Sola, J. Boudreau, J. Bouffard, E. V. Bouhova-Thacker, D. Boumediene, C. Bourdarios, S. K. Boutle, A. Boveia, J. Boyd, I. R. Boyko, A. J. Bozson, J. Bracinik, A. Brandt, G. Brandt, O. Brandt, U. Bratzler, B. Brau, J. E. Brau, W. D. Breaden Madden, K. Brendlinger, A. J. Brennan, L. Brenner, R. Brenner, S. Bressler, D. L. Briglin, T. M. Bristow, D. Britton, D. Britzger, F. M. Brochu, I. Brock, R. Brock, G. Brooijmans, T. Brooks, W. K. Brooks, J. Brosamer, E. Brost, J. H Broughton, P. A. Bruckman de Renstrom, D. Bruncko, A. Bruni, G. Bruni, L. S. Bruni, S. Bruno, BH Brunt, M. Bruschi, N. Bruscino, P. Bryant, L. Bryngemark, T. Buanes, Q. Buat, P. Buchholz, A. G. Buckley, I. A. Budagov, F. Buehrer, M. K. Bugge, O. Bulekov, D. Bullock, T. J. Burch, S. Burdin, C. D. Burgard, A. M. Burger, B. Burghgrave, K. Burka, S. Burke, I. Burmeister, J. T. P. Burr, E. Busato, D. Büscher, V. Büscher, P. Bussey, J. M. Butler, C. M. Buttar, J. M. Butterworth, P. Butti, W. Buttinger, A. Buzatu, A. R. Buzykaev, S. Cabrera Urbán, D. Caforio, V. M. Cairo, O. Cakir, N. Calace, P. Calafiura, A. Calandri, G. Calderini, P. Calfayan. Search for supersymmetry in events with b-tagged jets and missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Journal of High Energy Physics, 2017, 195, DOI: 10.1007/JHEP11(2017)195