#### Magnetically charged calorons with non-trivial holonomy

Journal of High Energy Physics
June 2018, 2018:24 | Cite as
Magnetically charged calorons with non-trivial holonomy
AuthorsAuthors and affiliations
Takumi KatoAtsushi NakamulaKoki Takesue
Open Access
Regular Article - Theoretical Physics
First Online: 05 June 2018
Received: 14 April 2018
Accepted: 03 June 2018
1 Shares 50 Downloads
Abstract
Instantons in pure Yang-Mills theories on partially periodic space \( {\mathrm{\mathbb{R}}}^3\times {S}^1 \) are usually called calorons. The background periodicity brings on characteristic features of calorons such as non-trivial holonomy, which plays an essential role for confinement/deconfinement transition in pure Yang-Mills gauge theory. For the case of gauge group SU(2), calorons can be interpreted as composite objects of two constituent “monopoles” with opposite magnetic charges. There are often the cases that the two monopole charges are unbalanced so that the calorons possess net magnetic charge in R3. In this paper, we consider several mechanism how such net magnetic charges appear for certain types of calorons through the ADHM/Nahm construction with explicit examples. In particular, we construct analytically the gauge configuration of the (2, 1)-caloron with U(1)-symmetry, which has intrinsically magnetic charge.
Keywords Solitons Monopoles and Instantons Integrable Field Theories Wilson ’t Hooft and Polyakov loops
ArXiv ePrint: 1804.03268
Download to read the full article text
Notes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
[1]
D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
[2]
M. Shifman and M. Ünsal, Confinement in Yang-Mills: Elements of a Big Picture, Nucl. Phys. Proc. Suppl. 186 (2009) 235 [arXiv:0810.3861] [INSPIRE].ADSCrossRefGoogle Scholar
[3]
D. Diakonov, Topology and confinement, Nucl. Phys. Proc. Suppl. 195 (2009) 5 [arXiv:0906.2456] [INSPIRE].ADSCrossRefGoogle Scholar
[4]
D. Diakonov, N. Gromov, V. Petrov and S. Slizovskiy, Quantum weights of dyons and of instantons with nontrivial holonomy, Phys. Rev. D 70 (2004) 036003 [hep-th/0404042] [INSPIRE].ADSGoogle Scholar
[5]
E. Poppitz, T. Schäfer and M. Ünsal, Universal mechanism of (semi-classical) deconfinement and theta-dependence for all simple groups, JHEP 03 (2013) 087 [arXiv:1212.1238] [INSPIRE].ADSCrossRefMATHGoogle Scholar
[6]
D. Diakonov and N. Gromov, SU(N ) caloron measure and its relation to instantons, Phys. Rev. D 72 (2005) 025003 [hep-th/0502132] [INSPIRE].ADSGoogle Scholar
[7]
N. Gromov and S. Slizovskiy, Fermionic determinant for SU(N ) caloron with nontrivial holonomy, Phys. Rev. D 73 (2006) 025022 [hep-th/0507101] [INSPIRE].ADSGoogle Scholar
[8]
S. Slizovskiy, Determinant of the SU(N ) caloron with nontrivial holonomy, Phys. Rev. D 76 (2007) 085019 [arXiv:0707.0851] [INSPIRE].ADSMathSciNetGoogle Scholar
[9]
D. Diakonov and V. Petrov, Confining ensemble of dyons, Phys. Rev. D 76 (2007) 056001 [arXiv:0704.3181] [INSPIRE].ADSGoogle Scholar
[10]
K.-M. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys. Rev. D 56 (1997) 3711 [hep-th/9702107] [INSPIRE].ADSMathSciNetGoogle Scholar
[11]
F. Bruckmann, D. Nogradi and P. van Baal, Constituent monopoles through the eyes of fermion zero modes, Nucl. Phys. B 666 (2003) 197 [hep-th/0305063] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
[12]
F. Bruckmann, D. Nogradi and P. van Baal, Higher charge calorons with non-trivial holonomy, Nucl. Phys. B 698 (2004) 233 [hep-th/0404210] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
[13]
P. Gerhold, E.M. Ilgenfritz and M. Müller-Preussker, An SU(2) KvBLL caloron gas model and confinement, Nucl. Phys. B 760 (2007) 1 [hep-ph/0607315] [INSPIRE].
[14]
R. Larsen and E. Shuryak, Interacting ensemble of the instanton-dyons and the deconfinement phase transition in the SU(2) gauge theory, Phys. Rev. D 92 (2015) 094022 [arXiv:1504.03341] [INSPIRE].ADSGoogle Scholar
[15]
E. Shuryak and T. Sulejmanpasic, Holonomy potential and confinement from a simple model of the gauge topology, Phys. Lett. B 726 (2013) 257 [arXiv:1305.0796] [INSPIRE].ADSCrossRefGoogle Scholar
[16]
T.C. Kraan and P. van Baal, Periodic instantons with nontrivial holonomy, Nucl. Phys. B 533 (1998) 627 [hep-th/9805168] [INSPIRE].ADSCrossRefMATHGoogle Scholar
[17]
K.-M. Lee and C.-h. Lu, SU(2) calorons and magnetic monopoles, Phys. Rev. D 58 (1998) 025011 [hep-th/9802108] [INSPIRE].ADSGoogle Scholar
[18]
D. Harland, Large scale and large period limits of symmetric calorons, J. Math. Phys. 48 (2007) 082905 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
[19]
A. Nakamula and J. Sakaguchi, Multi-Calorons Revisited, J. Math. Phys. 51 (2010) 043503 [arXiv:0909.1601] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
[20]
J. Cork, Symmetric calorons and the rotation map, arXiv:1711.04599 [INSPIRE].
[21]
E.B. Bogomolny, Stability of Classical Solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [INSPIRE].MathSciNetGoogle Scholar
[22]
M.K. Prasad and C.M. Sommerfield, An Exact Classical Solution for the ’t Hooft Monopole and the Julia-Zee Dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].ADSCrossRefGoogle Scholar
[23]
M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Yu. I. Manin, Construction of Instantons, Phys. Lett. A 65 (1978) 185 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
[24]
W. Nahm, A Simple Formalism for the BPS Monopole, Phys. Lett. B 90 (1980) 413 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
[25]
W. Nahm, Self-dual monopoles and calorons, Lect. Notes Phys. 201 (1984) 189.ADSMathSciNetCrossRefGoogle Scholar
[26]
B.J. Harrington and H.K. Shepard, Periodic Euclidean Solutions and the Finite Temperature Yang-Mills Gas, Phys. Rev. D 17 (1978) 2122 [INSPIRE].ADSGoogle Scholar
[27]
B.J. Harrington and H.K. Shepard, Thermodynamics of the Yang-Mills Gas, Phys. Rev. D 18 (1978) 2990 [INSPIRE].ADSGoogle Scholar
[28]
R. Jackiw, C. Nohl and C. Rebbi, Conformal Properties of Pseudoparticle Configurations, Phys. Rev. D 15 (1977) 1642 [INSPIRE].ADSGoogle Scholar
[29]
P. Rossi, Propagation Functions in the Field of a Monopole, Nucl. Phys. B 149 (1979) 170 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
[30]
R.S. Ward, Symmetric calorons, Phys. Lett. B 582 (2004) 203 [hep-th/0312180] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
[31]
D. Muranaka, N. Sawado, A. Nakamula and K. Toda, Numerical Nahm transform for 2-caloron solutions, Phys. Lett. B 703 (2011) 498 [arXiv:1105.2092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
[32]
S.A. Brown, H. Panagopoulos and M.K. Prasad, Two Separated SU(2) Yang-Mills Higgs Monopoles in the Adhmn Construction, Phys. Rev. D 26 (1982) 854 [INSPIRE].ADSGoogle Scholar
[33]
A. Chakrabarti, Periodic Generalizations of Static, Selfdual SU(2) Gauge Fields, Phys. Rev. D 35 (1987) 696 [INSPIRE].ADSGoogle Scholar
[34]
A. Chakrabarti, Quasiperiodic instantons, Phys. Rev. D 38 (1988) 3219 [INSPIRE].ADSMathSciNetGoogle Scholar
[35]
X. Chen and E.J. Weinberg, ADHMN boundary conditions from removing monopoles, Phys. Rev. D 67 (2003) 065020 [hep-th/0212328] [INSPIRE].ADSMATHGoogle Scholar
[36]
G. Etesi and M. Jardim, Moduli spaces of self-dual connections over asymptotically locally flat gravitational instantons, Commun. Math. Phys. 280 (2008) 285 [math/0608597] [INSPIRE].
Copyright information
© The Author(s) 2018
Authors and Affiliations
Takumi Kato1Atsushi Nakamula1Email authorKoki Takesue11.Department of Physics, School of ScienceKitasato UniversitySagamiharaJapan