Advanced search    

Search: authors:"Anna Skorska"

4 papers found.
Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Selective Migration of Subpopulations of Bone Marrow Cells along an SDF-1α and ATP Gradient

Both stem cell chemokine stromal cell-derived factor-1α (SDF-1α) and extracellular nucleotides such as adenosine triphosphate (ATP) are increased in ischemic myocardium. Since ATP has been reported to influence cell migration, we analysed the migratory response of bone marrow cells towards a combination of SDF-1 and ATP. Total nucleated cells (BM-TNCs) were isolated from bone...

Selective Migration of Subpopulations of Bone Marrow Cells along an SDF-1α and ATP Gradient

Both stem cell chemokine stromal cell-derived factor-1α (SDF-1α) and extracellular nucleotides such as adenosine triphosphate (ATP) are increased in ischemic myocardium. Since ATP has been reported to influence cell migration, we analysed the migratory response of bone marrow cells towards a combination of SDF-1 and ATP. Total nucleated cells (BM-TNCs) were isolated from bone...

Selective Migration of Subpopulations of Bone Marrow Cells along an SDF-1α and ATP Gradient

Both stem cell chemokine stromal cell-derived factor-1α (SDF-1α) and extracellular nucleotides such as adenosine triphosphate (ATP) are increased in ischemic myocardium. Since ATP has been reported to influence cell migration, we analysed the migratory response of bone marrow cells towards a combination of SDF-1 and ATP. Total nucleated cells (BM-TNCs) were isolated from bone...

Magnetic Nanoparticle Based Nonviral MicroRNA Delivery into Freshly Isolated CD105

Genetic modifications of bone marrow derived human mesenchymal stem cells (hMSCs) using microRNAs (miRs) may be used to improve their therapeutic potential and enable innovative strategies in tissue regeneration. However, most of the studies use cultured hMSCs, although these can lose their stem cell characteristics during expansion. Therefore, we aimed to develop a nonviral miR...