Advanced search    

Search: authors:"Darren J. Moore"

19 papers found.
Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2

Mutations in the LRRK2 gene cause autosomal dominant Parkinson's disease. LRRK2 encodes a multi-domain protein containing a Ras-of-complex (Roc) GTPase domain, a C-terminal of Roc domain and a protein kinase domain. LRRK2 can function as a GTPase and protein kinase, although the interplay between these two enzymatic domains is poorly understood. Although guanine nucleotide...

Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1

ScholarSearch for Darren J. Moore in:Nature Research journals • PubMed • Google ScholarSearch for Olga Pletnikova in:Nature Research journals • PubMed • Google ScholarSearch for Juan C. Troncoso in:Nature

Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration

Mutations in the vacuolar protein sorting 35 homolog (VPS35) gene at the PARK17 locus, encoding a key component of the retromer complex, were recently identified as a new cause of late-onset, autosomal dominant Parkinson's disease (PD). Here we explore the pathogenic consequences of PD-associated mutations in VPS35 using a number of model systems. VPS35 exhibits a broad neuronal...

GTPase Activity and Neuronal Toxicity of Parkinson's Disease–Associated LRRK2 Is Regulated by ArfGAP1

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD–associated...

Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily

Darren J. Moore darren.moore@ep 3 0 Present address: Center for Genomics and Transcriptomics (CeGT GmbH) , Paul-Ehrlich-Str. 17, 72076 Tuebingen, Germany 1 Department of Neurology 2 Neuroregeneration and

Common Pathogenic Effects of Missense Mutations in the P-Type ATPase ATP13A2 (PARK9) Associated with Early-Onset Parkinsonism

Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects...

Phosphorylation of 4E-BP1 in the Mammalian Brain Is Not Altered by LRRK2 Expression or Pathogenic Mutations

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of autosomal dominant familial Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase enzymatic domains. Disease-associated mutations in LRRK2 variably influence enzymatic activity with the common G2019S variant leading to enhanced kinase activity. Mutant LRRK2...

PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity

Mutations in the ATP13A2 gene (PARK9, OMIM 610513) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome and early-onset parkinsonism. ATP13A2 is an uncharacterized protein belonging to the P5-type ATPase subfamily that is predicted to regulate the membrane transport of cations. The physiological function of ATP13A2 in the mammalian brain is poorly understood. Here, we...

A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity

Mutations in LRRK2 are one of the primary genetic causes of Parkinson's disease (PD). LRRK2 contains a kinase and a GTPase domain, and familial PD mutations affect both enzymatic activities. However, the signaling mechanisms regulating LRRK2 and the pathogenic effects of familial mutations remain unknown. Identifying the signaling proteins that regulate LRRK2 function and...

Neurodegenerative phenotypes in an A53T α-synuclein transgenic mouse model are independent of LRRK2

7 8 Darren J. Moore 5 0 Department of Pathology 1 The Author 2012. Published by Oxford University Press. All rights reserved 2 Department of Neurology 3 Adrienne Helis Malvin Medical Research

GTPase Activity Plays a Key Role in the Pathobiology of LRRK2

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with late-onset, autosomal-dominant, familial Parkinson's disease (PD) and also contribute to sporadic disease. The LRRK2 gene encodes a large protein with multiple domains, including functional Roc GTPase and protein kinase domains. Mutations in LRRK2 most likely cause disease through a toxic gain-of...

LRRK2 secretion in exosomes is regulated by 14-3-3

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset Parkinson's disease (PD). Emerging evidence suggests a role for LRRK2 in the endocytic pathway. Here, we show that LRRK2 is released in extracellular microvesicles (i.e. exosomes) from cells that natively express LRRK2. LRRK2 localizes to collecting duct epithelial cells in the kidney that actively...

Conditional transgenic mice expressing C-terminally truncated human α-synuclein (αSyn119) exhibit reduced striatal dopamine without loss of nigrostriatal pathway dopaminergic neurons

Background Missense mutations and multiplications of the α-synuclein gene cause autosomal dominant familial Parkinson's disease (PD). α-Synuclein protein is also a major component of Lewy bodies, the hallmark pathological inclusions of PD. Therefore, α-synuclein plays an important role in the pathogenesis of familial and sporadic PD. To model α-synuclein-linked disease in vivo...

Dynamic and redundant regulation of LRRK2 and LRRK1 expression

Background Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene account for a significant proportion of autosomal-dominant and some late-onset sporadic Parkinson's disease. Elucidation of LRRK2 protein function in health and disease provides an opportunity for deciphering molecular pathways important in neurodegeneration. In mammals, LRRK1 and LRRK2 protein comprise a...

Conditional transgenic mice expressing C-terminally truncated human α-synuclein (αSyn119) exhibit reduced striatal dopamine without loss of nigrostriatal pathway dopaminergic neurons

Missense mutations and multiplications of the α-synuclein gene cause autosomal dominant familial Parkinson's disease (PD). α-Synuclein protein is also a major component of Lewy bodies, the hallmark pathological inclusions of PD. Therefore, α-synuclein plays an important role in the pathogenesis of familial and sporadic PD. To model α-synuclein-linked disease in vivo, transgenic...

Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress

The identification of rare monogenic forms of Parkinson's disease (PD) has provided tremendous insight into the molecular pathogenesis of this disorder. Heritable mutations in α-synuclein, parkin, DJ-1 and PINK1 cause familial forms of PD. In the more common sporadic form of PD, oxidative stress and derangements in mitochondrial complex-I function are considered to play a...

Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) cause late-onset Parkinson's disease indistinguishable from idiopathic disease. The mechanisms whereby missense alterations in the LRRK2 gene initiate neurodegeneration remain unknown. Here, we demonstrate that seven of 10 suspected familial-linked mutations result in increased kinase activity. Functional and disease...

Dopaminergic Neuronal Loss, Reduced Neurite Complexity and Autophagic Abnormalities in Transgenic Mice Expressing G2019S Mutant LRRK2

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease...

Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis

Both homozygous (L166P, M26I, deletion) and heterozygous mutations (D149A, A104T) in the DJ-1 gene have been identified in Parkinson's disease (PD) patients. The biochemical function and subcellular localization of DJ-1 protein have not been clarified. To date the localization of DJ-1 protein has largely been described in studies over-expressing tagged DJ-1 protein in vitro. It...