10 papers found.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Use AND, OR, NOT, +word, -word, "long phrase", (parentheses) to fine-tune your search.

Abstract We introduce new tools for studying modular flow in AdS/CFT. These tools allow us to efficiently extract bulk information related to causality and locality. For example, we discuss the relation between analyticity in modular time and entanglement wedge nesting which can then be used to extract the location of the Ryu-Takayanagi (RT) surface directly from the boundary...

Abstract We study probe corrections to the Eigenstate Thermalization Hypothesis (ETH) in the context of 2D CFTs with large central charge and a sparse spectrum of low dimension operators. In particular, we focus on observables in the form of non-local composite operators \( {\mathcal{O}}_{\mathrm{obs}}(x)={\mathcal{O}}_L(x){\mathcal{O}}_L(0) \) with h L ≪ c. As a light probe...

We study the reconstruction of bulk operators in the entanglement wedge in terms of low energy operators localized in the respective boundary region. To leading order in N, the dual boundary operators are constructed from the modular flow of single trace operators in the boundary subregion. The appearance of modular evolved boundary operators can be understood due to the equality...

In this paper, we demonstrate the emergence of nonlinear gravitational equations directly from the physics of a broad class of conformal field theories. We consider CFT excited states defined by adding sources for scalar primary or stress tensor operators to the Euclidean path integral defining the vacuum state. For these states, we show that up to second order in the sources...

We compute the leading contribution to the mutual information (MI) of two disjoint spheres in the large distance regime for arbitrary conformal field theories (CFT) in any dimension. This is achieved by refining the operator product expansion method introduced by Cardy [1]. For CFTs with holographic duals the leading contribution to the MI at long distances comes from bulk...

We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on \( {\mathrm{\mathbb{R}}}^{1,d-1} \). We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress...

We further develop perturbative methods used to calculate entanglement entropy (EE) away from an interacting CFT fixed point. At second order we find certain universal terms in the renormalized EE which were predicted previously from holography and which we find hold universally for relevant deformations of any CFT in any dimension. We use both replica methods and direct methods...

HJE
Shape dependence of entanglement entropy in
**Thomas** **Faulkner** 0
Robert G. Leigh 0
Onkar Parrikar 0
0 Department of Physics, University of Illinois
We study universal features in the shape

Entanglement entropy obeys a ‘first law’, an exact quantum generalization of the ordinary first law of thermodynamics. In any CFT with a semiclassical holographic dual, this first law has an interpretation in the dual gravitational theory as a constraint on the spacetimes dual to CFT states. For small perturbations around the CFT vacuum state, we show that the set of such...

We study the effects of a superconducting condensate on holographic Fermi surfaces. With a suitable coupling between the fermion and the condensate, there are stable quasiparticles with a gap. We find some similarities with the phenomenology of the cuprates: in systems whose normal state is a non-Fermi liquid with no stable quasiparticles, a stable quasiparticle peak appears in...