Biotechnology for Biofuels

http://www.biotechnologyforbiofuels.com/

List of Papers (Total 1,179)

Lipid metabolism of phenol-tolerant Rhodococcus opacus strains for lignin bioconversion

Lignin is a recalcitrant aromatic polymer that is a potential feedstock for renewable fuel and chemical production. Rhodococcus opacus PD630 is a promising strain for the biological upgrading of lignin due to its ability to tolerate and utilize lignin-derived aromatic compounds. To enhance its aromatic tolerance, we recently applied adaptive evolution using phenol as a sole...

Discovery of novel geranylgeranyl reductases and characterization of their substrate promiscuity

Geranylgeranyl reductase (GGR) is a flavin-containing redox enzyme that hydrogenates a variety of unactivated polyprenyl substrates, which are further processed mostly for lipid biosynthesis in archaea or chlorophyll biosynthesis in plants. To date, only a few GGR genes have been confirmed to reduce polyprenyl substrates in vitro or in vivo. In this work, we aimed to expand the...

Genomics and biochemistry investigation on the metabolic pathway of milled wood and alkali lignin-derived aromatic metabolites of Comamonas serinivorans SP-35

The efficient depolymerization and utilization of lignin are one of the most important goals for the renewable use of lignocelluloses. The degradation and complete mineralization of lignin by bacteria represent a key step for carbon recycling in land ecosystems as well. However, many aspects of this process remain unclear, for example, the complex network of metabolic pathways...

A process for purifying xylosugars of pre-hydrolysis liquor from kraft-based dissolving pulp production process

In the kraft-based dissolving pulp production process, pre-hydrolysis liquor (PHL) is produced, which contains hemicelluloses, lignin, furfural and acetic acid. PHL is currently burned in the recovery boiler of the kraft pulping process, but it can be utilized for the generation of high-valued products, such as xylitol and xylanase, via fermentation processes. However, some PHL...

Combined ensiling and hydrothermal processing as efficient pretreatment of sugarcane bagasse for 2G bioethanol production

Ensiling cannot be utilized as a stand-alone pretreatment for sugar-based biorefinery processes but, in combination with hydrothermal processing, it can enhance pretreatment while ensuring a stable long-term storage option for abundant but moist biomass. The effectiveness of combining ensiling with hydrothermal pretreatment depends on biomass nature, pretreatment, and silage...

An NIRS-based assay of chemical composition and biomass digestibility for rapid selection of Jerusalem artichoke clones

High-throughput evaluation of lignocellulosic biomass feedstock quality is the key to the successful commercialization of bioethanol production. Currently, wet chemical methods for the determination of chemical composition and biomass digestibility are expensive and time-consuming, thus hindering comprehensive feedstock quality assessments based on these biomass specifications...

Comparative transcriptome and metabolome analysis suggests bottlenecks that limit seed and oil yields in transgenic Camelina sativa expressing diacylglycerol acyltransferase 1 and glycerol-3-phosphate dehydrogenase

Camelina sativa has attracted much interest as alternative renewable resources for biodiesel, other oil-based industrial products and a source for edible oils. Its unique oil attributes attract research to engineering new varieties of improved oil quantity and quality. The overexpression of enzymes catalyzing the synthesis of the glycerol backbone and the sequential conjugation...

Comparative transcriptome analyses of oleaginous Botryococcus braunii race A reveal significant differences in gene expression upon cobalt enrichment

Botryococcus braunii is known for its high hydrocarbon content, thus making it a strong candidate feedstock for biofuel production. Previous study has revealed that a high cobalt concentration can promote hydrocarbon synthesis and it has little effect on growth of B. braunii cells. However, mechanisms beyond the cobalt enrichment remain unknown. This study seeks to explore the...

Mechanism and enhancement of lipid accumulation in filamentous oleaginous microalgae Tribonema minus under heterotrophic condition

The filamentous microalgae Tribonema minus accumulates large amounts of lipids under photoautotrophic condition, while under heterotrophic condition, the lipid content decreased dramatically. Determination of the differences in metabolic pathways between photoautotrophic and heterotrophic growth will provide targets and strategies for improvement of lipid accumulation in...

In silico-designed lignin peroxidase from Phanerochaete chrysosporium shows enhanced acid stability for depolymerization of lignin

The lignin peroxidase isozyme H8 from the white-rot fungus Phanerochaete chrysosporium (LiPH8) demonstrates a high redox potential and can efficiently catalyze the oxidation of veratryl alcohol, as well as the degradation of recalcitrant lignin. However, native LiPH8 is unstable under acidic pH conditions. This characteristic is a barrier to lignin depolymerization, as...

Cas9-guide RNA ribonucleoprotein-induced genome editing in the industrial green alga Coccomyxa sp. strain KJ

Oxygen-evolving photosynthetic microorganisms, collectively termed as microalgae, are gaining attention as alternative fuel sources. The unicellular alga Coccomyxa sp. strain KJ that belongs to the class Trebouxiophyceae can grow rapidly in minimal mineral media and accumulate triacylglycerols at levels > 60% (w/w) of its dry weight under nitrogen depletion conditions. Thus, the...

A new approach to recycle oxalic acid during lignocellulose pretreatment for xylose production

Dilute oxalic acid pretreatment has drawn much attention because it could selectively hydrolyse the hemicellulose fraction during lignocellulose pretreatment. However, there are few studies focusing on the recovery of oxalic acid. Here, we reported a new approach to recycle oxalic acid used in pretreatment via ethanol extraction. The highest xylose content in hydrolysate was 266...

N 2 O and CH 4 emission from Miscanthus energy crop fields in the infertile Loess Plateau of China

The greenhouse gas (GHG) mitigation is one of the most important environmental benefits of using bioenergy replacing fossil fuels. Nitrous oxide (N2O) and methane (CH4) are important GHGs and have drawn extra attention for their roles in global warming. Although there have been many works of soil emissions of N2O and CH4 from bioenergy crops in the field scale, GHG emissions in...

Metabolic engineering of the thermophilic filamentous fungus Myceliophthora thermophila to produce fumaric acid

Fumaric acid is widely used in food and pharmaceutical industries and is recognized as a versatile industrial chemical feedstock. Increasing concerns about energy and environmental problems have resulted in a focus on fumaric acid production by microbial fermentation via bioconversion of renewable feedstocks. Filamentous fungi are the predominant microorganisms used to produce...

Expression of an endoglucanase–cellobiohydrolase fusion protein in Saccharomyces cerevisiae, Yarrowia lipolytica, and Lipomyces starkeyi

The low secretion levels of cellobiohydrolase I (CBHI) in yeasts are one of the key barriers preventing yeast from directly degrading and utilizing lignocellulose. To overcome this obstacle, we have explored the approach of genetically linking an easily secreted protein to CBHI, with CBHI being the last to be folded. The Trichoderma reesei eg2 (TrEGII) gene was selected as the...

Simultaneous consumption of cellobiose and xylose by Bacillus coagulans to circumvent glucose repression and identification of its cellobiose-assimilating operons

The use of inedible lignocellulosic biomasses for biomanufacturing provides important environmental and economic benefits for society. Efficient co-utilization of lignocellulosic biomass-derived sugars, primarily glucose and xylose, is critical for the viability of lignocellulosic biorefineries. However, the phenomenon of glucose repression prevents co-utilization of both glucose...

Effect of lignin fractions isolated from different biomass sources on cellulose oxidation by fungal lytic polysaccharide monooxygenases

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that oxidatively cleave recalcitrant lignocellulose in the presence of oxygen or hydrogen peroxide as co-substrate and a reducing agent as electron donor. One of the possible systems that provide electrons to the LPMOs active site and promote the polysaccharide degradation involves the mediation of phenolic...

Synthesis and techno-economic assessment of microbial-based processes for terpenes production

Recent advances in metabolic engineering enable the production of chemicals from sugars through microbial bio-conversion. Terpenes have attracted substantial attention due to their relatively high prices and wide applications in different industries. To this end, we synthesize and assess processes for microbial production of terpenes. To explain a counterintuitive experimental...

Hydrolysis of untreated lignocellulosic feedstock is independent of S-lignin composition in newly classified anaerobic fungal isolate, Piromyces sp. UH3-1

Plant biomass is an abundant but underused feedstock for bioenergy production due to its complex and variable composition, which resists breakdown into fermentable sugars. These feedstocks, however, are routinely degraded by many uncommercialized microbes such as anaerobic gut fungi. These gut fungi express a broad range of carbohydrate active enzymes and are native to the...

A global analysis of gene expression in Fibrobacter succinogenes S85 grown on cellulose and soluble sugars at different growth rates

Cellulose is the most abundant biological polymer on earth, making it an attractive substrate for the production of next-generation biofuels and commodity chemicals. However, the economics of cellulose utilization are currently unfavorable due to a lack of efficient methods for its hydrolysis. Fibrobacter succinogenes strain S85, originally isolated from the bovine rumen, is...

Structural changes in lignocellulosic biomass during activation with ionic liquids comprising 3-methylimidazolium cations and carboxylate anions

Lignocellulosic biomass requires either pretreatment and/or fractionation to recover its individual components for further use as intermediate building blocks for producing fuels, chemicals, and products. Numerous ionic liquids (ILs) have been investigated for biomass pretreatment or fractionation due to their ability to activate lignocellulosic biomass, thereby reducing biomass...

Restriction-deficient mutants and marker-less genomic modification for metabolic engineering of the solvent producer Clostridium saccharobutylicum

Clostridium saccharobutylicum NCP 262 is a solventogenic bacterium that has been used for the industrial production of acetone, butanol, and ethanol. The lack of a genetic manipulation system for C. saccharobutylicum currently limits (i) the use of metabolic pathway engineering to improve the yield, titer, and productivity of n-butanol production by this microorganism, and (ii...

Quantitative visualization of lignocellulose components in transverse sections of moso bamboo based on FTIR macro- and micro-spectroscopy coupled with chemometrics

Due to the increasing demands of energy and depletion of fossil fuel, bamboo is considered to be one of the most important renewable biological resources on the basis of its advantages of rapid growth ability and rich reserves. Cellulose, hemicellulose, and lignin are the three most important constituents in moso bamboo. Their concentrations and, especially, their microscopic...

Stacking of a low-lignin trait with an increased guaiacyl and 5-hydroxyguaiacyl unit trait leads to additive and synergistic effects on saccharification efficiency in Arabidopsis thaliana

Lignocellulosic biomass, such as wood and straw, is an interesting feedstock for the production of fermentable sugars. However, mainly due to the presence of lignin, this type of biomass is recalcitrant to saccharification. In Arabidopsis, lignocellulosic biomass with a lower lignin content or with lignin with an increased fraction of guaiacyl (G) and 5-hydroxyguaiacyl (5H) units...

Biorefining of protein waste for production of sustainable fuels and chemicals

To mitigate the climate change caused by CO2 emission, the global incentive to the low-carbon alternatives as replacement of fossil fuel-derived products continuously expands the need for renewable feedstock. There will be accompanied by the generation of enormous protein waste as a result. The economical viability of the biorefinery platform can be realized once the surplus...