Journal of Intelligent & Robotic Systems

http://link.springer.com/journal/10846

List of Papers (Total 113)

Human Re-Identification with a Robot Thermal Camera Using Entropy-Based Sampling

Human re-identification is an important feature of domestic service robots, in particular for elderly monitoring and assistance, because it allows them to perform personalized tasks and human-robot interactions. However vision-based re- identification systems are subject to limitations due to human pose and poor lighting conditions. This paper presents a new re-identification...

A Control Method for Joint Torque Minimization of Redundant Manipulators Handling Large External Forces

In this paper, a control method is developed for minimizing joint torque on a redundant manipulator where an external force acts on the end-effector. Using null space control, the redundant task is designed to minimize the torque required to oppose the external force, and reduce the dynamic torque. Furthermore, the joint motion can be weighted to factor in physical constraints...

A Complete Workflow for Automatic Forward Kinematics Model Extraction of Robotic Total Stations Using the Denavit-Hartenberg Convention

Development and verification of real-time algorithms for robotic total stations usually require hard-ware-in-the-loop approaches, which can be complex and time-consuming. Simulator-in-the-loop can be used instead, but the design of a simulation environment and sufficient detailed modeling of the hardware are required. Typically, device specification and calibration data are...

Vortex Actuation via Electric Ducted Fans: an Experimental Study

The presented work investigates the potential of utilizing commercially available Electric Ducted Fans (EDFs) as adhesion actuators, while providing a novel insight on the analysis of the adhesion nature related to negative pressure and thrust force generation against a target surface. To this goal, a novel EDF-based Vortex Actuation Setup (VAS) is proposed for monitoring...

Elbow Detection in Pipes for Autonomous Navigation of Inspection Robots

Nuclear decommissioning is a global challenge with high costs associated with it due to the hazardous environments created by radioactive materials. Most nuclear decommissioning sites contain significant amounts of pipework, the majority of which is uncharacterised with regards radioactive contamination. If there is any uncertainty as to the contamination status of a pipe, it...

Evaluation of approach strategies for harvesting robots: Case study of sweet pepper harvesting

Robotic harvesters that use visual servoing must choose the best direction from which to approach the fruit to minimize occlusion and avoid obstacles that might interfere with the detection along the approach. This work proposes different approach strategies, compares them in terms of cycle times, and presents a failure analysis methodology of the different approach strategies...

Extended Factitious Force Approach for Control of a Mobile Manipulator Moving on Unknown Terrain

In the paper a new control algorithm for mobile manipulators with skid–steering platform, moving on unknown terrain, has been introduced. The mobile manipulator consists of a skid–steering mobile platform and a 2R rigid manipulating arm mounted on the platform. Due to under–actuation of such mobile platforms, the concept of factitious force (which does not exist in reality and is...

Evolutionary Modular Robotics: Survey and Analysis

This paper surveys various applications of artificial evolution in the field of modular robots. Evolutionary robotics aims to design autonomous adaptive robots automatically that can evolve to accomplish a specific task while adapting to environmental changes. A number of studies have demonstrated the feasibility of evolutionary algorithms for generating robotic control and...

Rhythmic-Reflex Hybrid Adaptive Walking Control of Biped Robot

For the central pattern generation inspired biped walking control algorithm, it is hard to coordinate all the degrees of freedom of a robot by regulating the parameters of a neutral network to achieve stable and adaptive walking. In this work, a hybrid rhythmic–reflex control method is presented, which can realize stable and adaptive biped walking. By integrating zero moment...

Rapid Navigation Function Control for Two-Wheeled Mobile Robots

This paper presents a kinematic controller for a differentially driven mobile robot. The controller is based on the navigation function (NF) concept that guarantees goal achievement from almost all initial states. Slow convergence in some cases is a significant disadvantage of this approach, especially when narrow passages exist in the environment and/or specific values of design...

Real-Time Trajectory Generation Methods for Cooperating Mobile Manipulators Subject to State and Control Constraints

This paper deals with the real-time trajectory generation problem for two cooperating mobile robots moving the common rigid object. The holonomic constraints resulting from a closed kinematic chain and the dynamics of such a system are considered. Two methods of generation sub-optimal trajectories allowing for mechanical and control limitations and collision avoidance conditions...

Communication Within Multi-FSM Based Robotic Systems

The paper presents a robotic system design methodology based on the concept of an embodied agent decomposed into communicating subsystems, whose activities are specified in terms of FSMs invoking behaviours parameterised by transition functions and terminal conditions. In the implementation phase, this specification is transformed into a system composed of a whiteboard providing...

Mona: an Affordable Open-Source Mobile Robot for Education and Research

Mobile robots are playing a significant role in Higher Education science and engineering teaching, as they offer a flexible platform to explore and teach a wide-range of topics such as mechanics, electronics and software. Unfortunately the widespread adoption is limited by their high cost and the complexity of user interfaces and programming tools. To overcome these issues, a new...

Tracking the Kinematically Optimal Trajectories by Mobile Manipulators

This paper addresses the kinematically optimal control problem of the mobile manipulators. Dynamic equations of the mobile manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the mobile manipulator when tracking the trajectory by the end-effector. A computationally simple class of the Jacobian transpose control algorithms is...

A Study on Coaxial Quadrotor Model Parameter Estimation: an Application of the Improved Square Root Unscented Kalman Filter

The parametrized model of the Unmanned Aerial Vehicle (UAV) is a crucial part of control algorithms, estimation processes and fault diagnostic systems. Among plenty of available methods for model structure or model parameters estimation, there are a few, which are suitable for nonlinear UAV models. In this work authors propose an estimation method of parameters of the coaxial...

Quantifying Risk of Ground Impact Fatalities for Small Unmanned Aircraft

One of the major challenges of conducting operations of unmanned aircraft, especially operations beyond visual line-of-sight (BVLOS), is to make a realistic and sufficiently detailed risk assessment. An important part of such an assessment is to identify the risk of fatalities, preferably in a quantitative way since this allows for comparison with manned aviation to determine...

Parametric Study on Formation Flying Effectiveness for a Blended-Wing UAV

This paper investigates aerodynamic performance improvements of formation flight at transonic speeds for a medium size Unmanned Aerial Vehicle (UAV). The metric for assessing the aerodynamic improvement of formation flight is the computed drag. The total drag for each formation configuration is compared with a single UAV, where a final drag reduction percentage is estimated. The...

Survey on Communication and Networks for Autonomous Marine Systems

The rapid development of autonomous systems and Information and Communications Technologies (ICT) create new opportunities for maritime activities. Existing autonomous systems are becoming more powerful and utilise the capabilities of several types of devices such as Autonomous Underwater Vehicles (AUVs), Unmanned Surface Vehicles (USVs) – sometimes referred as Autonomous Surface...

Optimisation of Trajectories for Wireless Power Transmission to a Quadrotor Aerial Robot

Unmanned aircraft such as multirotors are typically limited in endurance by the need to minimise weight, often sacrificing power plant mass and therefore output. Wireless power transmission is a method of delivering power to such aircraft from an off-vehicle transmitter, reducing weight whilst ensuring long-term endurance. However, transmission of high-powered lasers in...

Predicting Human Actions Taking into Account Object Affordances

Anticipating human intentional actions is essential for many applications involving service robots and social robots. Nowadays assisting robots must do reasoning beyond the present with predicting future actions. It is difficult due to its non-Markovian property and the rich contextual information. This task requires the subtle details inherent in human movements that may imply a...