Nanoscale Research Letters

http://link.springer.com/journal/11671

List of Papers (Total 5,462)

Low-Power Resistive Switching Characteristic in HfO2/TiOx Bi-Layer Resistive Random-Access Memory

Resistive random-access memory devices with atomic layer deposition HfO2 and radio frequency sputtering TiOx as resistive switching layers were fabricated successfully. Low-power characteristic with 1.52 μW set power (1 μA@1.52 V) and 1.12 μW reset power (1 μA@1.12 V) was obtained in the HfO2/TiOx resistive random-access memory (RRAM) devices by controlling the oxygen content of...

ZnO Porous Nanosheets with Partial Surface Modification for Enhanced Charges Separation and High Photocatalytic Activity Under Solar Irradiation

ZnO porous nanosheets (PNSs) with partial surface modification were fabricated by means of depositing amorphous BiVO4 on basic zinc carbonate nanosheets followed by calcining at 500 °C. At low levels of anchored amorphous BiVO4, the surface of ZnO PNSs was partially evolved into Bi3.9Zn0.4V1.7O10.5 (BZVO). The measurements for photocurrent and photoluminescence demonstrate that...

Integration of Environmental Friendly Perovskites for High-efficiency White Light-emitting Diodes

Perovskite quantum dots (QDs) have been widely used in white light-emitting diodes (WLEDs), due to their high quantum yield (QY), tunable bandgap, and simple preparation. However, the red-emitting perovskite QDs are usually containing iodine (I), which is not stable under continuous light irradiation. Herein, perovskite-based WLED is fabricated by lead-free bismuth (Bi)-doped...

Effects of Meshed p-type Contact Structure on the Light Extraction Effect for Deep Ultraviolet Flip-Chip Light-Emitting Diodes

In this work, flip-chip AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs) with various meshed contact structures are systematically investigated via three-dimensional finite-difference time-domain (3D FDTD) method. It is observed that both transverse electric (TE)- and transverse magnetic (TM)-polarized light extraction efficiencies (LEEs) are sensitive to the spacing...

Electronic Properties of Armchair Black Phosphorene Nanoribbons Edge-Modified by Transition Elements V, Cr, and Mn

The structural, electrical, and magnetic properties of armchair black phosphorene nanoribbons (APNRs) edge-functionalized by transitional metal (TM) elements V, Cr, and Mn were studied by the density functional theory combined with the non-equilibrium Green’s function. Spin-polarized edge states introduce great varieties to the electronic structures of TM-APNRs. For APNRs with Mn...

Multiferroic ABO3 Transition Metal Oxides: a Rare Interaction of Ferroelectricity and Magnetism

This review article summarizes the development of different kinds of materials that evolved interest in all field of science particularly on new nano-materials which possess both electric and magnetic properties at the nanoscale. Materials of such kind possessing both magnetic and electric properties have tremendous applications and own an intensive research activity. These...

Synthesis of Large-Area Single-Layer Graphene Using Refined Cooking Palm Oil on Copper Substrate by Spray Injector-Assisted CVD

We present a synthesis of large-area single-layer graphene on copper substrate using a refined cooking palm oil, a natural single carbon source, by a home-made spray injector-assisted chemical vapor deposition system. The effects of the distance between spray nozzle and substrate, and growth temperature are studied. From Raman mapping analysis, shorter distance of 1 cm and...

Positive and Negative Photoconductivity Conversion Induced by H2O Molecule Adsorption in WO3 Nanowire

Negative photoconductivity effect has been observed in the Au/WO3 nanowire/Au devices in a high humidity environment, which might be attributed to the accumulation of H+ ions on the surface of WO3 nanowire. Under illumination with violet light (445 nm), the photo-excited holes can oxidize the adsorbed H2O molecules to produce H+ ions and O2, while the photo-excited electrons at...

Using Different Ions to Tune Graphene Stack Structures from Sheet- to Onion-Like During Plasma Exfoliation, with Supercapacitor Applications

In this article, we report a facile and simple approach for tuning graphene nanosheet structures (GNS) with different ions in the electrolytes through cathodic plasma exfoliation process in electrochemical reactions. We obtained sheet- and onion-like GNS when aqueous electrolyte NaOH and H2SO4, respectively, were present during plasma exfoliation in the electrochemical reactions...

Preparation and Evaluation of Liposomes Co-Loaded with Doxorubicin, Phospholipase D Inhibitor 5-Fluoro-2-Indolyl Deschlorohalopemide (FIPI) and D-Alpha Tocopheryl Acid Succinate (α-TOS) for Anti-Metastasis

Tumor metastasis has become a key obstacle to cancer treatment, which causes high mortality. Nowadays, it involves multiple complex pathways, and conventional treatments are not effective due to fewer targets. The aims of the present study were to construct a novel liposome delivery system co-loading a specific PLD inhibitor 5-fluoro-2-indolyldes-chlorohalopemide (FIPI) in...

Flexible Transparent Electrodes Based on Gold Nanomeshes

The transmittance, conductivity, and flexibility are the crucial properties for the development of next-generation flexible electrodes. Achieving a good trade-off between transmittance and conductivity of flexible electrodes has been a challenge because the two properties are inversely proportional. Herein, we reveal a good trade-off between transmittance and conductivity of gold...

Improved Ferroelectric Performance of Mg-Doped LiNbO3 Films by an Ideal Atomic Layer Deposited Al2O3 Tunnel Switch Layer

Bilayer structures composed of 5% Mg-doped LiNbO3 single-crystal films and ultrathin Al2O3 layers with thickness ranging from 2 to 6 nm have been fabricated by using ion slicing technique combined with atomic layer deposition method. The transient domain switching current measurement results reveal that the P-V hysteresis loops are symmetry in type II mode with single voltage...

Fluorescent Nano-Biomass Dots: Ultrasonic-Assisted Extraction and Their Application as Nanoprobe for Fe3+ detection

Biomass as sustainable and renewable resource has been one of the important energy sources for human life. Herein, luminescent nano-biomass dots (NBDs) have been extracted from soybean through ultrasonic method, which endows biomass with fluorescence property. The as-prepared NBDs are amorphous in structure with an average diameter of 2.4 nm and show bright blue fluorescence with...

Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract

In the present report, three different shapes of chitosan-capped gold nanoparticles (nanospheres, nanostars, and nanorods) were synthesized to investigate the effects of shape on cytotoxicity and cellular uptake in cancer cells. Green tea extract was utilized as a reducing agent to reduce gold salts to gold nanospheres. Gold nanostars were prepared using an as-prepared nanosphere...

On the Baliga’s Figure-Of-Merits (BFOM) Enhancement of a Novel GaN Nano-Pillar Vertical Field Effect Transistor (FET) with 2DEG Channel and Patterned Substrate

A novel enhancement-mode vertical GaN field effect transistor (FET) with 2DEG for reducing the on-state resistance (RON) and substrate pattern (SP) for enhancing the breakdown voltage (BV) is proposed in this work. By deliberately designing the width and height of the SP, the high concentrated electric field (E-field) under p-GaN cap could be separated without dramatically...

Ge pMOSFETs with GeOx Passivation Formed by Ozone and Plasma Post Oxidation

A comparison study on electrical performance of Ge pMOSFETs with a GeOx passivation layer formed by ozone post oxidation (OPO) and plasma post oxidation (PPO) is performed. PPO and OPO were carried out on an Al2O3/n-Ge (001) substrate followed by a 5-nm HfO2 gate dielectric in situ deposited in an ALD chamber. The quality of the dielectric/Ge interface layer was characterized by...

Recyclable and Flexible Starch-Ag Networks and Its Application in Joint Sensor

Flexible transparent conductive electrodes are essential component for flexible optoelectronic devices and have been extensively studied in recent years, while most of the researches are focusing on the electrode itself, few topics in material green and recyclability. In this paper, we demonstrate a high-performance transparent conductive electrode (TCE), based on our previous...

Germanium Negative Capacitance Field Effect Transistors: Impacts of Zr Composition in Hf1−xZrxO2

Germanium (Ge) negative capacitance field-effect transistors (NCFETs) with various Zr compositions in Hf1−xZrxO2 (x = 0.33, 0.48, and 0.67) are fabricated and characterized. For each Zr composition, the NCFET exhibits the sudden drop in some points of subthreshold swing (SS), which is induced by the NC effect. Drive current IDS increases with the increase of annealing temperature...

Formation of Monodisperse Carbon Spheres with Tunable Size via Triblock Copolymer-Assisted Synthesis and Their Capacitor Properties

A facile hydrothermal polymerization method has been developed for the preparation of monodisperse carbon spheres (MCSs) using the triblock copolymer F108 as surfactant. The synthesis is based on the ammonia-catalyzed polymerization reaction between phenol and formaldehyde (PF). The resultant MCSs have a perfect spherical morphology, smooth surface, and high dispersity. The...

High-Performance CsPbI2Br Perovskite Solar Cells with Zinc and Manganese Doping

Photovoltaic performances of CsPbI2Br solar cells are still lower than those of hybrid inorganic–organic perovskite solar cells, and researchers are exploring ways to improve their efficiencies. Due to its higher thermal stability in comparison with the generally studied hybrid inorganic–organic perovskites, all-inorganic CsPbI2Br has recently attracted great attention. By...

New Insights on Factors Limiting the Carrier Transport in Very Thin Amorphous Sn-Doped In2O3 Films with High Hall Mobility

We demonstrated that a mass density and size effect are dominant factors to limit the transport properties of very thin amorphous Sn-doped In2O3 (a-ITO) films. a-ITO films with various thicknesses (t) ranging from 5 to 50 nm were deposited on non-alkali glass substrates without intentional heating of the substrates by reactive plasma deposition with direct-current arc discharge...

Atomic Layer Deposition of Buffer Layers for the Growth of Vertically Aligned Carbon Nanotube Arrays

Vertically aligned carbon nanotube arrays (VACNTs) show a great potential for various applications, such as thermal interface materials (TIMs). Besides the thermally oxidized SiO2, atomic layer deposition (ALD) was also used to synthesize oxide buffer layers before the deposition of the catalyst, such as Al2O3, TiO2, and ZnO. The growth of VACNTs was found to be largely dependent...

High-Performance a-InGaZnO Thin-Film Transistors with Extremely Low Thermal Budget by Using a Hydrogen-Rich Al2O3 Dielectric

Electrical characteristics of amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) are compared by using O2 plasma-enhanced atomic layer deposition Al2O3 dielectrics at different temperatures. High-performance a-IGZO TFTs are demonstrated successfully with an Al2O3 dielectric deposited at room temperature, which exhibit a high field-effect mobility of 19.5 cm2 V− 1 s− 1, a...

Horizontally Aggregation of Monolayer Reduced Graphene Oxide Under Deep UV Irradiation in Solution

Graphene has been widely used in novel optoelectronic devices in decades. Nowadays, fabrication of large size monolayer graphene with spectral selectivity is highly demanded. Here, we report a simple method for synthesizing large size monolayer graphene with chemical functionalized groups in solution. The few layer nano-graphene can be exfoliated into monolayer nano-graphene...

Effect of orientation on polarization switching and fatigue of Bi3.15Nd0.85Ti2.99Mn0.01O12 thin films at both low and elevated temperatures

Bi3.15Nd0.85Ti2.99Mn0.01O12 (BNTM) thin films with (200)-orientations, (117)-orientations, and mixed-orientations were prepared by sol-gel methods. The influence of orientations on polarization fatigue behaviors of BNTM thin films were systematically investigated at both low and elevated temperatures. It was found that the changed trends of the polarization fatigue of (200...